| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xrltnsym | Unicode version | ||
| Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| xrltnsym | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxr 9851 | 
. 2
 | |
| 2 | elxr 9851 | 
. 2
 | |
| 3 | ltnsym 8112 | 
. . . 4
 | |
| 4 | rexr 8072 | 
. . . . . . . 8
 | |
| 5 | pnfnlt 9862 | 
. . . . . . . 8
 | |
| 6 | 4, 5 | syl 14 | 
. . . . . . 7
 | 
| 7 | 6 | adantr 276 | 
. . . . . 6
 | 
| 8 | breq1 4036 | 
. . . . . . 7
 | |
| 9 | 8 | adantl 277 | 
. . . . . 6
 | 
| 10 | 7, 9 | mtbird 674 | 
. . . . 5
 | 
| 11 | 10 | a1d 22 | 
. . . 4
 | 
| 12 | nltmnf 9863 | 
. . . . . . . 8
 | |
| 13 | 4, 12 | syl 14 | 
. . . . . . 7
 | 
| 14 | 13 | adantr 276 | 
. . . . . 6
 | 
| 15 | breq2 4037 | 
. . . . . . 7
 | |
| 16 | 15 | adantl 277 | 
. . . . . 6
 | 
| 17 | 14, 16 | mtbird 674 | 
. . . . 5
 | 
| 18 | 17 | pm2.21d 620 | 
. . . 4
 | 
| 19 | 3, 11, 18 | 3jaodan 1317 | 
. . 3
 | 
| 20 | pnfnlt 9862 | 
. . . . . . 7
 | |
| 21 | 20 | adantl 277 | 
. . . . . 6
 | 
| 22 | breq1 4036 | 
. . . . . . 7
 | |
| 23 | 22 | adantr 276 | 
. . . . . 6
 | 
| 24 | 21, 23 | mtbird 674 | 
. . . . 5
 | 
| 25 | 24 | pm2.21d 620 | 
. . . 4
 | 
| 26 | 2, 25 | sylan2br 288 | 
. . 3
 | 
| 27 | rexr 8072 | 
. . . . . . . 8
 | |
| 28 | nltmnf 9863 | 
. . . . . . . 8
 | |
| 29 | 27, 28 | syl 14 | 
. . . . . . 7
 | 
| 30 | 29 | adantl 277 | 
. . . . . 6
 | 
| 31 | breq2 4037 | 
. . . . . . 7
 | |
| 32 | 31 | adantr 276 | 
. . . . . 6
 | 
| 33 | 30, 32 | mtbird 674 | 
. . . . 5
 | 
| 34 | 33 | a1d 22 | 
. . . 4
 | 
| 35 | mnfxr 8083 | 
. . . . . . . 8
 | |
| 36 | pnfnlt 9862 | 
. . . . . . . 8
 | |
| 37 | 35, 36 | ax-mp 5 | 
. . . . . . 7
 | 
| 38 | breq12 4038 | 
. . . . . . 7
 | |
| 39 | 37, 38 | mtbiri 676 | 
. . . . . 6
 | 
| 40 | 39 | ancoms 268 | 
. . . . 5
 | 
| 41 | 40 | a1d 22 | 
. . . 4
 | 
| 42 | xrltnr 9854 | 
. . . . . . 7
 | |
| 43 | 35, 42 | ax-mp 5 | 
. . . . . 6
 | 
| 44 | breq12 4038 | 
. . . . . 6
 | |
| 45 | 43, 44 | mtbiri 676 | 
. . . . 5
 | 
| 46 | 45 | pm2.21d 620 | 
. . . 4
 | 
| 47 | 34, 41, 46 | 3jaodan 1317 | 
. . 3
 | 
| 48 | 19, 26, 47 | 3jaoian 1316 | 
. 2
 | 
| 49 | 1, 2, 48 | syl2anb 291 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 | 
| This theorem is referenced by: xrltnsym2 9869 xrltle 9873 | 
| Copyright terms: Public domain | W3C validator |