| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddcom | Unicode version | ||
| Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xaddcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9851 |
. 2
| |
| 2 | elxr 9851 |
. . . 4
| |
| 3 | recn 8012 |
. . . . . . 7
| |
| 4 | recn 8012 |
. . . . . . 7
| |
| 5 | addcom 8163 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . . 6
|
| 7 | rexadd 9927 |
. . . . . 6
| |
| 8 | rexadd 9927 |
. . . . . . 7
| |
| 9 | 8 | ancoms 268 |
. . . . . 6
|
| 10 | 6, 7, 9 | 3eqtr4d 2239 |
. . . . 5
|
| 11 | oveq2 5930 |
. . . . . . 7
| |
| 12 | rexr 8072 |
. . . . . . . 8
| |
| 13 | renemnf 8075 |
. . . . . . . 8
| |
| 14 | xaddpnf1 9921 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 11, 15 | sylan9eqr 2251 |
. . . . . 6
|
| 17 | oveq1 5929 |
. . . . . . 7
| |
| 18 | xaddpnf2 9922 |
. . . . . . . 8
| |
| 19 | 12, 13, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 17, 19 | sylan9eqr 2251 |
. . . . . 6
|
| 21 | 16, 20 | eqtr4d 2232 |
. . . . 5
|
| 22 | oveq2 5930 |
. . . . . . 7
| |
| 23 | renepnf 8074 |
. . . . . . . 8
| |
| 24 | xaddmnf1 9923 |
. . . . . . . 8
| |
| 25 | 12, 23, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | 22, 25 | sylan9eqr 2251 |
. . . . . 6
|
| 27 | oveq1 5929 |
. . . . . . 7
| |
| 28 | xaddmnf2 9924 |
. . . . . . . 8
| |
| 29 | 12, 23, 28 | syl2anc 411 |
. . . . . . 7
|
| 30 | 27, 29 | sylan9eqr 2251 |
. . . . . 6
|
| 31 | 26, 30 | eqtr4d 2232 |
. . . . 5
|
| 32 | 10, 21, 31 | 3jaodan 1317 |
. . . 4
|
| 33 | 2, 32 | sylan2b 287 |
. . 3
|
| 34 | pnfaddmnf 9925 |
. . . . . . . 8
| |
| 35 | mnfaddpnf 9926 |
. . . . . . . 8
| |
| 36 | 34, 35 | eqtr4i 2220 |
. . . . . . 7
|
| 37 | simpr 110 |
. . . . . . . 8
| |
| 38 | 37 | oveq2d 5938 |
. . . . . . 7
|
| 39 | 37 | oveq1d 5937 |
. . . . . . 7
|
| 40 | 36, 38, 39 | 3eqtr4a 2255 |
. . . . . 6
|
| 41 | xaddpnf2 9922 |
. . . . . . 7
| |
| 42 | xaddpnf1 9921 |
. . . . . . 7
| |
| 43 | 41, 42 | eqtr4d 2232 |
. . . . . 6
|
| 44 | xrmnfdc 9918 |
. . . . . . . 8
| |
| 45 | exmiddc 837 |
. . . . . . . 8
| |
| 46 | 44, 45 | syl 14 |
. . . . . . 7
|
| 47 | df-ne 2368 |
. . . . . . . 8
| |
| 48 | 47 | orbi2i 763 |
. . . . . . 7
|
| 49 | 46, 48 | sylibr 134 |
. . . . . 6
|
| 50 | 40, 43, 49 | mpjaodan 799 |
. . . . 5
|
| 51 | 50 | adantl 277 |
. . . 4
|
| 52 | simpl 109 |
. . . . 5
| |
| 53 | 52 | oveq1d 5937 |
. . . 4
|
| 54 | 52 | oveq2d 5938 |
. . . 4
|
| 55 | 51, 53, 54 | 3eqtr4d 2239 |
. . 3
|
| 56 | 35, 34 | eqtr4i 2220 |
. . . . . . 7
|
| 57 | simpr 110 |
. . . . . . . 8
| |
| 58 | 57 | oveq2d 5938 |
. . . . . . 7
|
| 59 | 57 | oveq1d 5937 |
. . . . . . 7
|
| 60 | 56, 58, 59 | 3eqtr4a 2255 |
. . . . . 6
|
| 61 | xaddmnf2 9924 |
. . . . . . 7
| |
| 62 | xaddmnf1 9923 |
. . . . . . 7
| |
| 63 | 61, 62 | eqtr4d 2232 |
. . . . . 6
|
| 64 | xrpnfdc 9917 |
. . . . . . . 8
| |
| 65 | exmiddc 837 |
. . . . . . . 8
| |
| 66 | 64, 65 | syl 14 |
. . . . . . 7
|
| 67 | df-ne 2368 |
. . . . . . . 8
| |
| 68 | 67 | orbi2i 763 |
. . . . . . 7
|
| 69 | 66, 68 | sylibr 134 |
. . . . . 6
|
| 70 | 60, 63, 69 | mpjaodan 799 |
. . . . 5
|
| 71 | 70 | adantl 277 |
. . . 4
|
| 72 | simpl 109 |
. . . . 5
| |
| 73 | 72 | oveq1d 5937 |
. . . 4
|
| 74 | 72 | oveq2d 5938 |
. . . 4
|
| 75 | 71, 73, 74 | 3eqtr4d 2239 |
. . 3
|
| 76 | 33, 55, 75 | 3jaoian 1316 |
. 2
|
| 77 | 1, 76 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-addcom 7979 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-xadd 9848 |
| This theorem is referenced by: xaddid2 9938 xleadd2a 9949 xltadd2 9952 xadd4d 9960 xrmaxaddlem 11425 |
| Copyright terms: Public domain | W3C validator |