| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddcom | Unicode version | ||
| Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xaddcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9972 |
. 2
| |
| 2 | elxr 9972 |
. . . 4
| |
| 3 | recn 8132 |
. . . . . . 7
| |
| 4 | recn 8132 |
. . . . . . 7
| |
| 5 | addcom 8283 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . . 6
|
| 7 | rexadd 10048 |
. . . . . 6
| |
| 8 | rexadd 10048 |
. . . . . . 7
| |
| 9 | 8 | ancoms 268 |
. . . . . 6
|
| 10 | 6, 7, 9 | 3eqtr4d 2272 |
. . . . 5
|
| 11 | oveq2 6009 |
. . . . . . 7
| |
| 12 | rexr 8192 |
. . . . . . . 8
| |
| 13 | renemnf 8195 |
. . . . . . . 8
| |
| 14 | xaddpnf1 10042 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 11, 15 | sylan9eqr 2284 |
. . . . . 6
|
| 17 | oveq1 6008 |
. . . . . . 7
| |
| 18 | xaddpnf2 10043 |
. . . . . . . 8
| |
| 19 | 12, 13, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 17, 19 | sylan9eqr 2284 |
. . . . . 6
|
| 21 | 16, 20 | eqtr4d 2265 |
. . . . 5
|
| 22 | oveq2 6009 |
. . . . . . 7
| |
| 23 | renepnf 8194 |
. . . . . . . 8
| |
| 24 | xaddmnf1 10044 |
. . . . . . . 8
| |
| 25 | 12, 23, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | 22, 25 | sylan9eqr 2284 |
. . . . . 6
|
| 27 | oveq1 6008 |
. . . . . . 7
| |
| 28 | xaddmnf2 10045 |
. . . . . . . 8
| |
| 29 | 12, 23, 28 | syl2anc 411 |
. . . . . . 7
|
| 30 | 27, 29 | sylan9eqr 2284 |
. . . . . 6
|
| 31 | 26, 30 | eqtr4d 2265 |
. . . . 5
|
| 32 | 10, 21, 31 | 3jaodan 1340 |
. . . 4
|
| 33 | 2, 32 | sylan2b 287 |
. . 3
|
| 34 | pnfaddmnf 10046 |
. . . . . . . 8
| |
| 35 | mnfaddpnf 10047 |
. . . . . . . 8
| |
| 36 | 34, 35 | eqtr4i 2253 |
. . . . . . 7
|
| 37 | simpr 110 |
. . . . . . . 8
| |
| 38 | 37 | oveq2d 6017 |
. . . . . . 7
|
| 39 | 37 | oveq1d 6016 |
. . . . . . 7
|
| 40 | 36, 38, 39 | 3eqtr4a 2288 |
. . . . . 6
|
| 41 | xaddpnf2 10043 |
. . . . . . 7
| |
| 42 | xaddpnf1 10042 |
. . . . . . 7
| |
| 43 | 41, 42 | eqtr4d 2265 |
. . . . . 6
|
| 44 | xrmnfdc 10039 |
. . . . . . . 8
| |
| 45 | exmiddc 841 |
. . . . . . . 8
| |
| 46 | 44, 45 | syl 14 |
. . . . . . 7
|
| 47 | df-ne 2401 |
. . . . . . . 8
| |
| 48 | 47 | orbi2i 767 |
. . . . . . 7
|
| 49 | 46, 48 | sylibr 134 |
. . . . . 6
|
| 50 | 40, 43, 49 | mpjaodan 803 |
. . . . 5
|
| 51 | 50 | adantl 277 |
. . . 4
|
| 52 | simpl 109 |
. . . . 5
| |
| 53 | 52 | oveq1d 6016 |
. . . 4
|
| 54 | 52 | oveq2d 6017 |
. . . 4
|
| 55 | 51, 53, 54 | 3eqtr4d 2272 |
. . 3
|
| 56 | 35, 34 | eqtr4i 2253 |
. . . . . . 7
|
| 57 | simpr 110 |
. . . . . . . 8
| |
| 58 | 57 | oveq2d 6017 |
. . . . . . 7
|
| 59 | 57 | oveq1d 6016 |
. . . . . . 7
|
| 60 | 56, 58, 59 | 3eqtr4a 2288 |
. . . . . 6
|
| 61 | xaddmnf2 10045 |
. . . . . . 7
| |
| 62 | xaddmnf1 10044 |
. . . . . . 7
| |
| 63 | 61, 62 | eqtr4d 2265 |
. . . . . 6
|
| 64 | xrpnfdc 10038 |
. . . . . . . 8
| |
| 65 | exmiddc 841 |
. . . . . . . 8
| |
| 66 | 64, 65 | syl 14 |
. . . . . . 7
|
| 67 | df-ne 2401 |
. . . . . . . 8
| |
| 68 | 67 | orbi2i 767 |
. . . . . . 7
|
| 69 | 66, 68 | sylibr 134 |
. . . . . 6
|
| 70 | 60, 63, 69 | mpjaodan 803 |
. . . . 5
|
| 71 | 70 | adantl 277 |
. . . 4
|
| 72 | simpl 109 |
. . . . 5
| |
| 73 | 72 | oveq1d 6016 |
. . . 4
|
| 74 | 72 | oveq2d 6017 |
. . . 4
|
| 75 | 71, 73, 74 | 3eqtr4d 2272 |
. . 3
|
| 76 | 33, 55, 75 | 3jaoian 1339 |
. 2
|
| 77 | 1, 76 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-addcom 8099 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-xadd 9969 |
| This theorem is referenced by: xaddid2 10059 xleadd2a 10070 xltadd2 10073 xadd4d 10081 xrmaxaddlem 11771 |
| Copyright terms: Public domain | W3C validator |