Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddcom | Unicode version |
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
Ref | Expression |
---|---|
xaddcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 | |
2 | elxr 9712 | . . . 4 | |
3 | recn 7886 | . . . . . . 7 | |
4 | recn 7886 | . . . . . . 7 | |
5 | addcom 8035 | . . . . . . 7 | |
6 | 3, 4, 5 | syl2an 287 | . . . . . 6 |
7 | rexadd 9788 | . . . . . 6 | |
8 | rexadd 9788 | . . . . . . 7 | |
9 | 8 | ancoms 266 | . . . . . 6 |
10 | 6, 7, 9 | 3eqtr4d 2208 | . . . . 5 |
11 | oveq2 5850 | . . . . . . 7 | |
12 | rexr 7944 | . . . . . . . 8 | |
13 | renemnf 7947 | . . . . . . . 8 | |
14 | xaddpnf1 9782 | . . . . . . . 8 | |
15 | 12, 13, 14 | syl2anc 409 | . . . . . . 7 |
16 | 11, 15 | sylan9eqr 2221 | . . . . . 6 |
17 | oveq1 5849 | . . . . . . 7 | |
18 | xaddpnf2 9783 | . . . . . . . 8 | |
19 | 12, 13, 18 | syl2anc 409 | . . . . . . 7 |
20 | 17, 19 | sylan9eqr 2221 | . . . . . 6 |
21 | 16, 20 | eqtr4d 2201 | . . . . 5 |
22 | oveq2 5850 | . . . . . . 7 | |
23 | renepnf 7946 | . . . . . . . 8 | |
24 | xaddmnf1 9784 | . . . . . . . 8 | |
25 | 12, 23, 24 | syl2anc 409 | . . . . . . 7 |
26 | 22, 25 | sylan9eqr 2221 | . . . . . 6 |
27 | oveq1 5849 | . . . . . . 7 | |
28 | xaddmnf2 9785 | . . . . . . . 8 | |
29 | 12, 23, 28 | syl2anc 409 | . . . . . . 7 |
30 | 27, 29 | sylan9eqr 2221 | . . . . . 6 |
31 | 26, 30 | eqtr4d 2201 | . . . . 5 |
32 | 10, 21, 31 | 3jaodan 1296 | . . . 4 |
33 | 2, 32 | sylan2b 285 | . . 3 |
34 | pnfaddmnf 9786 | . . . . . . . 8 | |
35 | mnfaddpnf 9787 | . . . . . . . 8 | |
36 | 34, 35 | eqtr4i 2189 | . . . . . . 7 |
37 | simpr 109 | . . . . . . . 8 | |
38 | 37 | oveq2d 5858 | . . . . . . 7 |
39 | 37 | oveq1d 5857 | . . . . . . 7 |
40 | 36, 38, 39 | 3eqtr4a 2225 | . . . . . 6 |
41 | xaddpnf2 9783 | . . . . . . 7 | |
42 | xaddpnf1 9782 | . . . . . . 7 | |
43 | 41, 42 | eqtr4d 2201 | . . . . . 6 |
44 | xrmnfdc 9779 | . . . . . . . 8 DECID | |
45 | exmiddc 826 | . . . . . . . 8 DECID | |
46 | 44, 45 | syl 14 | . . . . . . 7 |
47 | df-ne 2337 | . . . . . . . 8 | |
48 | 47 | orbi2i 752 | . . . . . . 7 |
49 | 46, 48 | sylibr 133 | . . . . . 6 |
50 | 40, 43, 49 | mpjaodan 788 | . . . . 5 |
51 | 50 | adantl 275 | . . . 4 |
52 | simpl 108 | . . . . 5 | |
53 | 52 | oveq1d 5857 | . . . 4 |
54 | 52 | oveq2d 5858 | . . . 4 |
55 | 51, 53, 54 | 3eqtr4d 2208 | . . 3 |
56 | 35, 34 | eqtr4i 2189 | . . . . . . 7 |
57 | simpr 109 | . . . . . . . 8 | |
58 | 57 | oveq2d 5858 | . . . . . . 7 |
59 | 57 | oveq1d 5857 | . . . . . . 7 |
60 | 56, 58, 59 | 3eqtr4a 2225 | . . . . . 6 |
61 | xaddmnf2 9785 | . . . . . . 7 | |
62 | xaddmnf1 9784 | . . . . . . 7 | |
63 | 61, 62 | eqtr4d 2201 | . . . . . 6 |
64 | xrpnfdc 9778 | . . . . . . . 8 DECID | |
65 | exmiddc 826 | . . . . . . . 8 DECID | |
66 | 64, 65 | syl 14 | . . . . . . 7 |
67 | df-ne 2337 | . . . . . . . 8 | |
68 | 67 | orbi2i 752 | . . . . . . 7 |
69 | 66, 68 | sylibr 133 | . . . . . 6 |
70 | 60, 63, 69 | mpjaodan 788 | . . . . 5 |
71 | 70 | adantl 275 | . . . 4 |
72 | simpl 108 | . . . . 5 | |
73 | 72 | oveq1d 5857 | . . . 4 |
74 | 72 | oveq2d 5858 | . . . 4 |
75 | 71, 73, 74 | 3eqtr4d 2208 | . . 3 |
76 | 33, 55, 75 | 3jaoian 1295 | . 2 |
77 | 1, 76 | sylanb 282 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 w3o 967 wceq 1343 wcel 2136 wne 2336 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-addcom 7853 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 |
This theorem is referenced by: xaddid2 9799 xleadd2a 9810 xltadd2 9813 xadd4d 9821 xrmaxaddlem 11201 |
Copyright terms: Public domain | W3C validator |