ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddcom Unicode version

Theorem xaddcom 9936
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 9851 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9851 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 recn 8012 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 8012 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
5 addcom 8163 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
63, 4, 5syl2an 289 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( B  +  A ) )
7 rexadd 9927 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
8 rexadd 9927 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B +e
A )  =  ( B  +  A ) )
98ancoms 268 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B +e
A )  =  ( B  +  A ) )
106, 7, 93eqtr4d 2239 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( B +e A ) )
11 oveq2 5930 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
12 rexr 8072 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
13 renemnf 8075 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= -oo )
14 xaddpnf1 9921 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
1512, 13, 14syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
1611, 15sylan9eqr 2251 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
17 oveq1 5929 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e A )  =  ( +oo +e A ) )
18 xaddpnf2 9922 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
1912, 13, 18syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( +oo +e A )  = +oo )
2017, 19sylan9eqr 2251 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( B +e
A )  = +oo )
2116, 20eqtr4d 2232 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  =  ( B +e A ) )
22 oveq2 5930 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
23 renepnf 8074 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
24 xaddmnf1 9923 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2512, 23, 24syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
2622, 25sylan9eqr 2251 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
27 oveq1 5929 . . . . . . 7  |-  ( B  = -oo  ->  ( B +e A )  =  ( -oo +e A ) )
28 xaddmnf2 9924 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
2912, 23, 28syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( -oo +e A )  = -oo )
3027, 29sylan9eqr 2251 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( B +e
A )  = -oo )
3126, 30eqtr4d 2232 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =  ( B +e A ) )
3210, 21, 313jaodan 1317 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A +e B )  =  ( B +e A ) )
332, 32sylan2b 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
34 pnfaddmnf 9925 . . . . . . . 8  |-  ( +oo +e -oo )  =  0
35 mnfaddpnf 9926 . . . . . . . 8  |-  ( -oo +e +oo )  =  0
3634, 35eqtr4i 2220 . . . . . . 7  |-  ( +oo +e -oo )  =  ( -oo +e +oo )
37 simpr 110 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  B  = -oo )
3837oveq2d 5938 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( +oo +e -oo ) )
3937oveq1d 5937 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( B +e +oo )  =  ( -oo +e +oo ) )
4036, 38, 393eqtr4a 2255 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( B +e +oo ) )
41 xaddpnf2 9922 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
42 xaddpnf1 9921 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
4341, 42eqtr4d 2232 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  =  ( B +e +oo ) )
44 xrmnfdc 9918 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = -oo )
45 exmiddc 837 . . . . . . . 8  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
4644, 45syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
47 df-ne 2368 . . . . . . . 8  |-  ( B  =/= -oo  <->  -.  B  = -oo )
4847orbi2i 763 . . . . . . 7  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
4946, 48sylibr 134 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
5040, 43, 49mpjaodan 799 . . . . 5  |-  ( B  e.  RR*  ->  ( +oo +e B )  =  ( B +e +oo ) )
5150adantl 277 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo +e B )  =  ( B +e +oo )
)
52 simpl 109 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
5352oveq1d 5937 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( +oo +e B ) )
5452oveq2d 5938 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( B +e
A )  =  ( B +e +oo ) )
5551, 53, 543eqtr4d 2239 . . 3  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
5635, 34eqtr4i 2220 . . . . . . 7  |-  ( -oo +e +oo )  =  ( +oo +e -oo )
57 simpr 110 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  B  = +oo )
5857oveq2d 5938 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( -oo +e +oo ) )
5957oveq1d 5937 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( B +e -oo )  =  ( +oo +e -oo ) )
6056, 58, 593eqtr4a 2255 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( B +e -oo ) )
61 xaddmnf2 9924 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
62 xaddmnf1 9923 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
6361, 62eqtr4d 2232 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  =  ( B +e -oo ) )
64 xrpnfdc 9917 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
65 exmiddc 837 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
6664, 65syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  -.  B  = +oo )
)
67 df-ne 2368 . . . . . . . 8  |-  ( B  =/= +oo  <->  -.  B  = +oo )
6867orbi2i 763 . . . . . . 7  |-  ( ( B  = +oo  \/  B  =/= +oo )  <->  ( B  = +oo  \/  -.  B  = +oo ) )
6966, 68sylibr 134 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  B  =/= +oo ) )
7060, 63, 69mpjaodan 799 . . . . 5  |-  ( B  e.  RR*  ->  ( -oo +e B )  =  ( B +e -oo ) )
7170adantl 277 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( -oo +e B )  =  ( B +e -oo )
)
72 simpl 109 . . . . 5  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  A  = -oo )
7372oveq1d 5937 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( -oo +e B ) )
7472oveq2d 5938 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( B +e
A )  =  ( B +e -oo ) )
7571, 73, 743eqtr4d 2239 . . 3  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
7633, 55, 753jaoian 1316 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e
A ) )
771, 76sylanb 284 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    + caddc 7882   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060   +ecxad 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-addcom 7979  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-xadd 9848
This theorem is referenced by:  xaddid2  9938  xleadd2a  9949  xltadd2  9952  xadd4d  9960  xrmaxaddlem  11425
  Copyright terms: Public domain W3C validator