| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddcom | Unicode version | ||
| Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xaddcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9933 |
. 2
| |
| 2 | elxr 9933 |
. . . 4
| |
| 3 | recn 8093 |
. . . . . . 7
| |
| 4 | recn 8093 |
. . . . . . 7
| |
| 5 | addcom 8244 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . . 6
|
| 7 | rexadd 10009 |
. . . . . 6
| |
| 8 | rexadd 10009 |
. . . . . . 7
| |
| 9 | 8 | ancoms 268 |
. . . . . 6
|
| 10 | 6, 7, 9 | 3eqtr4d 2250 |
. . . . 5
|
| 11 | oveq2 5975 |
. . . . . . 7
| |
| 12 | rexr 8153 |
. . . . . . . 8
| |
| 13 | renemnf 8156 |
. . . . . . . 8
| |
| 14 | xaddpnf1 10003 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 11, 15 | sylan9eqr 2262 |
. . . . . 6
|
| 17 | oveq1 5974 |
. . . . . . 7
| |
| 18 | xaddpnf2 10004 |
. . . . . . . 8
| |
| 19 | 12, 13, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 17, 19 | sylan9eqr 2262 |
. . . . . 6
|
| 21 | 16, 20 | eqtr4d 2243 |
. . . . 5
|
| 22 | oveq2 5975 |
. . . . . . 7
| |
| 23 | renepnf 8155 |
. . . . . . . 8
| |
| 24 | xaddmnf1 10005 |
. . . . . . . 8
| |
| 25 | 12, 23, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | 22, 25 | sylan9eqr 2262 |
. . . . . 6
|
| 27 | oveq1 5974 |
. . . . . . 7
| |
| 28 | xaddmnf2 10006 |
. . . . . . . 8
| |
| 29 | 12, 23, 28 | syl2anc 411 |
. . . . . . 7
|
| 30 | 27, 29 | sylan9eqr 2262 |
. . . . . 6
|
| 31 | 26, 30 | eqtr4d 2243 |
. . . . 5
|
| 32 | 10, 21, 31 | 3jaodan 1319 |
. . . 4
|
| 33 | 2, 32 | sylan2b 287 |
. . 3
|
| 34 | pnfaddmnf 10007 |
. . . . . . . 8
| |
| 35 | mnfaddpnf 10008 |
. . . . . . . 8
| |
| 36 | 34, 35 | eqtr4i 2231 |
. . . . . . 7
|
| 37 | simpr 110 |
. . . . . . . 8
| |
| 38 | 37 | oveq2d 5983 |
. . . . . . 7
|
| 39 | 37 | oveq1d 5982 |
. . . . . . 7
|
| 40 | 36, 38, 39 | 3eqtr4a 2266 |
. . . . . 6
|
| 41 | xaddpnf2 10004 |
. . . . . . 7
| |
| 42 | xaddpnf1 10003 |
. . . . . . 7
| |
| 43 | 41, 42 | eqtr4d 2243 |
. . . . . 6
|
| 44 | xrmnfdc 10000 |
. . . . . . . 8
| |
| 45 | exmiddc 838 |
. . . . . . . 8
| |
| 46 | 44, 45 | syl 14 |
. . . . . . 7
|
| 47 | df-ne 2379 |
. . . . . . . 8
| |
| 48 | 47 | orbi2i 764 |
. . . . . . 7
|
| 49 | 46, 48 | sylibr 134 |
. . . . . 6
|
| 50 | 40, 43, 49 | mpjaodan 800 |
. . . . 5
|
| 51 | 50 | adantl 277 |
. . . 4
|
| 52 | simpl 109 |
. . . . 5
| |
| 53 | 52 | oveq1d 5982 |
. . . 4
|
| 54 | 52 | oveq2d 5983 |
. . . 4
|
| 55 | 51, 53, 54 | 3eqtr4d 2250 |
. . 3
|
| 56 | 35, 34 | eqtr4i 2231 |
. . . . . . 7
|
| 57 | simpr 110 |
. . . . . . . 8
| |
| 58 | 57 | oveq2d 5983 |
. . . . . . 7
|
| 59 | 57 | oveq1d 5982 |
. . . . . . 7
|
| 60 | 56, 58, 59 | 3eqtr4a 2266 |
. . . . . 6
|
| 61 | xaddmnf2 10006 |
. . . . . . 7
| |
| 62 | xaddmnf1 10005 |
. . . . . . 7
| |
| 63 | 61, 62 | eqtr4d 2243 |
. . . . . 6
|
| 64 | xrpnfdc 9999 |
. . . . . . . 8
| |
| 65 | exmiddc 838 |
. . . . . . . 8
| |
| 66 | 64, 65 | syl 14 |
. . . . . . 7
|
| 67 | df-ne 2379 |
. . . . . . . 8
| |
| 68 | 67 | orbi2i 764 |
. . . . . . 7
|
| 69 | 66, 68 | sylibr 134 |
. . . . . 6
|
| 70 | 60, 63, 69 | mpjaodan 800 |
. . . . 5
|
| 71 | 70 | adantl 277 |
. . . 4
|
| 72 | simpl 109 |
. . . . 5
| |
| 73 | 72 | oveq1d 5982 |
. . . 4
|
| 74 | 72 | oveq2d 5983 |
. . . 4
|
| 75 | 71, 73, 74 | 3eqtr4d 2250 |
. . 3
|
| 76 | 33, 55, 75 | 3jaoian 1318 |
. 2
|
| 77 | 1, 76 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-addcom 8060 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xadd 9930 |
| This theorem is referenced by: xaddid2 10020 xleadd2a 10031 xltadd2 10034 xadd4d 10042 xrmaxaddlem 11686 |
| Copyright terms: Public domain | W3C validator |