ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddcom Unicode version

Theorem xaddcom 9863
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 9778 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9778 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 recn 7946 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 7946 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
5 addcom 8096 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
63, 4, 5syl2an 289 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( B  +  A ) )
7 rexadd 9854 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
8 rexadd 9854 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B +e
A )  =  ( B  +  A ) )
98ancoms 268 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B +e
A )  =  ( B  +  A ) )
106, 7, 93eqtr4d 2220 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( B +e A ) )
11 oveq2 5885 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
12 rexr 8005 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
13 renemnf 8008 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= -oo )
14 xaddpnf1 9848 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
1512, 13, 14syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
1611, 15sylan9eqr 2232 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
17 oveq1 5884 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e A )  =  ( +oo +e A ) )
18 xaddpnf2 9849 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
1912, 13, 18syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( +oo +e A )  = +oo )
2017, 19sylan9eqr 2232 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( B +e
A )  = +oo )
2116, 20eqtr4d 2213 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  =  ( B +e A ) )
22 oveq2 5885 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
23 renepnf 8007 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
24 xaddmnf1 9850 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2512, 23, 24syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
2622, 25sylan9eqr 2232 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
27 oveq1 5884 . . . . . . 7  |-  ( B  = -oo  ->  ( B +e A )  =  ( -oo +e A ) )
28 xaddmnf2 9851 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
2912, 23, 28syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( -oo +e A )  = -oo )
3027, 29sylan9eqr 2232 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( B +e
A )  = -oo )
3126, 30eqtr4d 2213 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =  ( B +e A ) )
3210, 21, 313jaodan 1306 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A +e B )  =  ( B +e A ) )
332, 32sylan2b 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
34 pnfaddmnf 9852 . . . . . . . 8  |-  ( +oo +e -oo )  =  0
35 mnfaddpnf 9853 . . . . . . . 8  |-  ( -oo +e +oo )  =  0
3634, 35eqtr4i 2201 . . . . . . 7  |-  ( +oo +e -oo )  =  ( -oo +e +oo )
37 simpr 110 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  B  = -oo )
3837oveq2d 5893 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( +oo +e -oo ) )
3937oveq1d 5892 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( B +e +oo )  =  ( -oo +e +oo ) )
4036, 38, 393eqtr4a 2236 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( B +e +oo ) )
41 xaddpnf2 9849 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
42 xaddpnf1 9848 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
4341, 42eqtr4d 2213 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  =  ( B +e +oo ) )
44 xrmnfdc 9845 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = -oo )
45 exmiddc 836 . . . . . . . 8  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
4644, 45syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
47 df-ne 2348 . . . . . . . 8  |-  ( B  =/= -oo  <->  -.  B  = -oo )
4847orbi2i 762 . . . . . . 7  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
4946, 48sylibr 134 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
5040, 43, 49mpjaodan 798 . . . . 5  |-  ( B  e.  RR*  ->  ( +oo +e B )  =  ( B +e +oo ) )
5150adantl 277 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo +e B )  =  ( B +e +oo )
)
52 simpl 109 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
5352oveq1d 5892 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( +oo +e B ) )
5452oveq2d 5893 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( B +e
A )  =  ( B +e +oo ) )
5551, 53, 543eqtr4d 2220 . . 3  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
5635, 34eqtr4i 2201 . . . . . . 7  |-  ( -oo +e +oo )  =  ( +oo +e -oo )
57 simpr 110 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  B  = +oo )
5857oveq2d 5893 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( -oo +e +oo ) )
5957oveq1d 5892 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( B +e -oo )  =  ( +oo +e -oo ) )
6056, 58, 593eqtr4a 2236 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( B +e -oo ) )
61 xaddmnf2 9851 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
62 xaddmnf1 9850 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
6361, 62eqtr4d 2213 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  =  ( B +e -oo ) )
64 xrpnfdc 9844 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
65 exmiddc 836 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
6664, 65syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  -.  B  = +oo )
)
67 df-ne 2348 . . . . . . . 8  |-  ( B  =/= +oo  <->  -.  B  = +oo )
6867orbi2i 762 . . . . . . 7  |-  ( ( B  = +oo  \/  B  =/= +oo )  <->  ( B  = +oo  \/  -.  B  = +oo ) )
6966, 68sylibr 134 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  B  =/= +oo ) )
7060, 63, 69mpjaodan 798 . . . . 5  |-  ( B  e.  RR*  ->  ( -oo +e B )  =  ( B +e -oo ) )
7170adantl 277 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( -oo +e B )  =  ( B +e -oo )
)
72 simpl 109 . . . . 5  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  A  = -oo )
7372oveq1d 5892 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( -oo +e B ) )
7472oveq2d 5893 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( B +e
A )  =  ( B +e -oo ) )
7571, 73, 743eqtr4d 2220 . . 3  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
7633, 55, 753jaoian 1305 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e
A ) )
771, 76sylanb 284 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    \/ w3o 977    = wceq 1353    e. wcel 2148    =/= wne 2347  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    + caddc 7816   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993   +ecxad 9772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-addcom 7913  ax-rnegex 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-xadd 9775
This theorem is referenced by:  xaddid2  9865  xleadd2a  9876  xltadd2  9879  xadd4d  9887  xrmaxaddlem  11270
  Copyright terms: Public domain W3C validator