ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddcom Unicode version

Theorem xaddcom 9797
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 9712 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9712 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 recn 7886 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 7886 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
5 addcom 8035 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
63, 4, 5syl2an 287 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( B  +  A ) )
7 rexadd 9788 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
8 rexadd 9788 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B +e
A )  =  ( B  +  A ) )
98ancoms 266 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B +e
A )  =  ( B  +  A ) )
106, 7, 93eqtr4d 2208 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( B +e A ) )
11 oveq2 5850 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
12 rexr 7944 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
13 renemnf 7947 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= -oo )
14 xaddpnf1 9782 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
1512, 13, 14syl2anc 409 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
1611, 15sylan9eqr 2221 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
17 oveq1 5849 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e A )  =  ( +oo +e A ) )
18 xaddpnf2 9783 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
1912, 13, 18syl2anc 409 . . . . . . 7  |-  ( A  e.  RR  ->  ( +oo +e A )  = +oo )
2017, 19sylan9eqr 2221 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( B +e
A )  = +oo )
2116, 20eqtr4d 2201 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  =  ( B +e A ) )
22 oveq2 5850 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
23 renepnf 7946 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
24 xaddmnf1 9784 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2512, 23, 24syl2anc 409 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
2622, 25sylan9eqr 2221 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
27 oveq1 5849 . . . . . . 7  |-  ( B  = -oo  ->  ( B +e A )  =  ( -oo +e A ) )
28 xaddmnf2 9785 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
2912, 23, 28syl2anc 409 . . . . . . 7  |-  ( A  e.  RR  ->  ( -oo +e A )  = -oo )
3027, 29sylan9eqr 2221 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( B +e
A )  = -oo )
3126, 30eqtr4d 2201 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =  ( B +e A ) )
3210, 21, 313jaodan 1296 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A +e B )  =  ( B +e A ) )
332, 32sylan2b 285 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
34 pnfaddmnf 9786 . . . . . . . 8  |-  ( +oo +e -oo )  =  0
35 mnfaddpnf 9787 . . . . . . . 8  |-  ( -oo +e +oo )  =  0
3634, 35eqtr4i 2189 . . . . . . 7  |-  ( +oo +e -oo )  =  ( -oo +e +oo )
37 simpr 109 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  B  = -oo )
3837oveq2d 5858 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( +oo +e -oo ) )
3937oveq1d 5857 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( B +e +oo )  =  ( -oo +e +oo ) )
4036, 38, 393eqtr4a 2225 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( B +e +oo ) )
41 xaddpnf2 9783 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
42 xaddpnf1 9782 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
4341, 42eqtr4d 2201 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  =  ( B +e +oo ) )
44 xrmnfdc 9779 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = -oo )
45 exmiddc 826 . . . . . . . 8  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
4644, 45syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
47 df-ne 2337 . . . . . . . 8  |-  ( B  =/= -oo  <->  -.  B  = -oo )
4847orbi2i 752 . . . . . . 7  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
4946, 48sylibr 133 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
5040, 43, 49mpjaodan 788 . . . . 5  |-  ( B  e.  RR*  ->  ( +oo +e B )  =  ( B +e +oo ) )
5150adantl 275 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo +e B )  =  ( B +e +oo )
)
52 simpl 108 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
5352oveq1d 5857 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( +oo +e B ) )
5452oveq2d 5858 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( B +e
A )  =  ( B +e +oo ) )
5551, 53, 543eqtr4d 2208 . . 3  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
5635, 34eqtr4i 2189 . . . . . . 7  |-  ( -oo +e +oo )  =  ( +oo +e -oo )
57 simpr 109 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  B  = +oo )
5857oveq2d 5858 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( -oo +e +oo ) )
5957oveq1d 5857 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( B +e -oo )  =  ( +oo +e -oo ) )
6056, 58, 593eqtr4a 2225 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( B +e -oo ) )
61 xaddmnf2 9785 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
62 xaddmnf1 9784 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
6361, 62eqtr4d 2201 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  =  ( B +e -oo ) )
64 xrpnfdc 9778 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
65 exmiddc 826 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
6664, 65syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  -.  B  = +oo )
)
67 df-ne 2337 . . . . . . . 8  |-  ( B  =/= +oo  <->  -.  B  = +oo )
6867orbi2i 752 . . . . . . 7  |-  ( ( B  = +oo  \/  B  =/= +oo )  <->  ( B  = +oo  \/  -.  B  = +oo ) )
6966, 68sylibr 133 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  B  =/= +oo ) )
7060, 63, 69mpjaodan 788 . . . . 5  |-  ( B  e.  RR*  ->  ( -oo +e B )  =  ( B +e -oo ) )
7170adantl 275 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( -oo +e B )  =  ( B +e -oo )
)
72 simpl 108 . . . . 5  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  A  = -oo )
7372oveq1d 5857 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( -oo +e B ) )
7472oveq2d 5858 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( B +e
A )  =  ( B +e -oo ) )
7571, 73, 743eqtr4d 2208 . . 3  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( B +e A ) )
7633, 55, 753jaoian 1295 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e
A ) )
771, 76sylanb 282 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    \/ w3o 967    = wceq 1343    e. wcel 2136    =/= wne 2336  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-addcom 7853  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-xadd 9709
This theorem is referenced by:  xaddid2  9799  xleadd2a  9810  xltadd2  9813  xadd4d  9821  xrmaxaddlem  11201
  Copyright terms: Public domain W3C validator