ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegdi Unicode version

Theorem xnegdi 9651
Description: Extended real version of negdi 8019. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegdi  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )

Proof of Theorem xnegdi
StepHypRef Expression
1 elxr 9563 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9563 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 recn 7753 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 7753 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
5 negdi 8019 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  +  B )  =  (
-u A  +  -u B ) )
63, 4, 5syl2an 287 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( A  +  B )  =  (
-u A  +  -u B ) )
7 readdcl 7746 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
8 rexneg 9613 . . . . . . . 8  |-  ( ( A  +  B )  e.  RR  ->  -e
( A  +  B
)  =  -u ( A  +  B )
)
97, 8syl 14 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-e ( A  +  B )  = 
-u ( A  +  B ) )
10 renegcl 8023 . . . . . . . 8  |-  ( A  e.  RR  ->  -u A  e.  RR )
11 renegcl 8023 . . . . . . . 8  |-  ( B  e.  RR  ->  -u B  e.  RR )
12 rexadd 9635 . . . . . . . 8  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  ( -u A +e -u B
)  =  ( -u A  +  -u B ) )
1310, 11, 12syl2an 287 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A +e -u B )  =  ( -u A  +  -u B ) )
146, 9, 133eqtr4d 2182 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-e ( A  +  B )  =  ( -u A +e -u B ) )
15 rexadd 9635 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
16 xnegeq 9610 . . . . . . 7  |-  ( ( A +e B )  =  ( A  +  B )  ->  -e ( A +e B )  = 
-e ( A  +  B ) )
1715, 16syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-e ( A +e B )  =  -e ( A  +  B ) )
18 rexneg 9613 . . . . . . 7  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
19 rexneg 9613 . . . . . . 7  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
2018, 19oveqan12d 5793 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (  -e A +e  -e
B )  =  (
-u A +e -u B ) )
2114, 17, 203eqtr4d 2182 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-e ( A +e B )  =  (  -e
A +e  -e B ) )
22 xnegpnf 9611 . . . . . 6  |-  -e +oo  = -oo
23 oveq2 5782 . . . . . . . 8  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
24 rexr 7811 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  RR* )
25 renemnf 7814 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= -oo )
26 xaddpnf1 9629 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
2724, 25, 26syl2anc 408 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
2823, 27sylan9eqr 2194 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
29 xnegeq 9610 . . . . . . 7  |-  ( ( A +e B )  = +oo  ->  -e ( A +e B )  = 
-e +oo )
3028, 29syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e ( A +e B )  =  -e +oo )
31 xnegeq 9610 . . . . . . . . 9  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
3231, 22syl6eq 2188 . . . . . . . 8  |-  ( B  = +oo  ->  -e
B  = -oo )
3332oveq2d 5790 . . . . . . 7  |-  ( B  = +oo  ->  (  -e A +e  -e B )  =  (  -e A +e -oo )
)
3418, 10eqeltrd 2216 . . . . . . . 8  |-  ( A  e.  RR  ->  -e
A  e.  RR )
35 rexr 7811 . . . . . . . . 9  |-  (  -e A  e.  RR  -> 
-e A  e. 
RR* )
36 renepnf 7813 . . . . . . . . 9  |-  (  -e A  e.  RR  -> 
-e A  =/= +oo )
37 xaddmnf1 9631 . . . . . . . . 9  |-  ( ( 
-e A  e. 
RR*  /\  -e A  =/= +oo )  -> 
(  -e A +e -oo )  = -oo )
3835, 36, 37syl2anc 408 . . . . . . . 8  |-  (  -e A  e.  RR  ->  (  -e A +e -oo )  = -oo )
3934, 38syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (  -e A +e -oo )  = -oo )
4033, 39sylan9eqr 2194 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  (  -e A +e  -e
B )  = -oo )
4122, 30, 403eqtr4a 2198 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e ( A +e B )  =  (  -e
A +e  -e B ) )
42 xnegmnf 9612 . . . . . 6  |-  -e -oo  = +oo
43 oveq2 5782 . . . . . . . 8  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
44 renepnf 7813 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= +oo )
45 xaddmnf1 9631 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
4624, 44, 45syl2anc 408 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
4743, 46sylan9eqr 2194 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
48 xnegeq 9610 . . . . . . 7  |-  ( ( A +e B )  = -oo  ->  -e ( A +e B )  = 
-e -oo )
4947, 48syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  -> 
-e ( A +e B )  =  -e -oo )
50 xnegeq 9610 . . . . . . . . 9  |-  ( B  = -oo  ->  -e
B  =  -e -oo )
5150, 42syl6eq 2188 . . . . . . . 8  |-  ( B  = -oo  ->  -e
B  = +oo )
5251oveq2d 5790 . . . . . . 7  |-  ( B  = -oo  ->  (  -e A +e  -e B )  =  (  -e A +e +oo )
)
53 renemnf 7814 . . . . . . . . 9  |-  (  -e A  e.  RR  -> 
-e A  =/= -oo )
54 xaddpnf1 9629 . . . . . . . . 9  |-  ( ( 
-e A  e. 
RR*  /\  -e A  =/= -oo )  -> 
(  -e A +e +oo )  = +oo )
5535, 53, 54syl2anc 408 . . . . . . . 8  |-  (  -e A  e.  RR  ->  (  -e A +e +oo )  = +oo )
5634, 55syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (  -e A +e +oo )  = +oo )
5752, 56sylan9eqr 2194 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  (  -e A +e  -e
B )  = +oo )
5842, 49, 573eqtr4a 2198 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  -> 
-e ( A +e B )  =  (  -e
A +e  -e B ) )
5921, 41, 583jaodan 1284 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
602, 59sylan2b 285 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  ->  -e ( A +e B )  =  (  -e A +e  -e
B ) )
61 xneg0 9614 . . . . . . 7  |-  -e 0  =  0
62 simpr 109 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  B  = -oo )
6362oveq2d 5790 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  ( +oo +e -oo ) )
64 pnfaddmnf 9633 . . . . . . . . 9  |-  ( +oo +e -oo )  =  0
6563, 64syl6eq 2188 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( +oo +e B )  =  0 )
66 xnegeq 9610 . . . . . . . 8  |-  ( ( +oo +e B )  =  0  ->  -e ( +oo +e B )  = 
-e 0 )
6765, 66syl 14 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  -e
( +oo +e B )  =  -e 0 )
6851adantl 275 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  -e
B  = +oo )
6968oveq2d 5790 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( -oo +e  -e
B )  =  ( -oo +e +oo ) )
70 mnfaddpnf 9634 . . . . . . . 8  |-  ( -oo +e +oo )  =  0
7169, 70syl6eq 2188 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  ( -oo +e  -e
B )  =  0 )
7261, 67, 713eqtr4a 2198 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = -oo )  ->  -e
( +oo +e B )  =  ( -oo +e  -e B ) )
73 xaddpnf2 9630 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
74 xnegeq 9610 . . . . . . . 8  |-  ( ( +oo +e B )  = +oo  ->  -e ( +oo +e B )  = 
-e +oo )
7573, 74syl 14 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  -e
( +oo +e B )  =  -e +oo )
76 xnegcl 9615 . . . . . . . 8  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
77 xnegeq 9610 . . . . . . . . . . . 12  |-  (  -e B  = +oo  -> 
-e  -e
B  =  -e +oo )
7877, 22syl6eq 2188 . . . . . . . . . . 11  |-  (  -e B  = +oo  -> 
-e  -e
B  = -oo )
79 xnegneg 9616 . . . . . . . . . . . 12  |-  ( B  e.  RR*  ->  -e  -e B  =  B )
8079eqeq1d 2148 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  (  -e  -e B  = -oo  <->  B  = -oo ) )
8178, 80syl5ib 153 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  (  -e B  = +oo  ->  B  = -oo )
)
8281necon3d 2352 . . . . . . . . 9  |-  ( B  e.  RR*  ->  ( B  =/= -oo  ->  -e
B  =/= +oo )
)
8382imp 123 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  -e
B  =/= +oo )
84 xaddmnf2 9632 . . . . . . . 8  |-  ( ( 
-e B  e. 
RR*  /\  -e B  =/= +oo )  -> 
( -oo +e  -e B )  = -oo )
8576, 83, 84syl2an2r 584 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( -oo +e  -e
B )  = -oo )
8622, 75, 853eqtr4a 2198 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  -e
( +oo +e B )  =  ( -oo +e  -e B ) )
87 xrmnfdc 9626 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = -oo )
88 exmiddc 821 . . . . . . . 8  |-  (DECID  B  = -oo  ->  ( B  = -oo  \/  -.  B  = -oo ) )
8987, 88syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  -.  B  = -oo )
)
90 df-ne 2309 . . . . . . . 8  |-  ( B  =/= -oo  <->  -.  B  = -oo )
9190orbi2i 751 . . . . . . 7  |-  ( ( B  = -oo  \/  B  =/= -oo )  <->  ( B  = -oo  \/  -.  B  = -oo ) )
9289, 91sylibr 133 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
9372, 86, 92mpjaodan 787 . . . . 5  |-  ( B  e.  RR*  ->  -e
( +oo +e B )  =  ( -oo +e  -e B ) )
9493adantl 275 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -e ( +oo +e B )  =  ( -oo +e  -e B ) )
95 simpl 108 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
9695oveq1d 5789 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( +oo +e B ) )
97 xnegeq 9610 . . . . 5  |-  ( ( A +e B )  =  ( +oo +e B )  ->  -e ( A +e B )  =  -e ( +oo +e B ) )
9896, 97syl 14 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -e ( A +e B )  = 
-e ( +oo +e B ) )
99 xnegeq 9610 . . . . . . 7  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
10099adantr 274 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -e A  =  -e +oo )
101100, 22syl6eq 2188 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -e A  = -oo )
102101oveq1d 5789 . . . 4  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
(  -e A +e  -e B )  =  ( -oo +e  -e B ) )
10394, 98, 1023eqtr4d 2182 . . 3  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -e ( A +e B )  =  (  -e A +e  -e
B ) )
104 simpr 109 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  B  = +oo )
105104oveq2d 5790 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  ( -oo +e +oo ) )
106105, 70syl6eq 2188 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( -oo +e B )  =  0 )
107 xnegeq 9610 . . . . . . . 8  |-  ( ( -oo +e B )  =  0  ->  -e ( -oo +e B )  = 
-e 0 )
108106, 107syl 14 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  -e
( -oo +e B )  =  -e 0 )
10932adantl 275 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  -e
B  = -oo )
110109oveq2d 5790 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( +oo +e  -e
B )  =  ( +oo +e -oo ) )
111110, 64syl6eq 2188 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  ( +oo +e  -e
B )  =  0 )
11261, 108, 1113eqtr4a 2198 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  = +oo )  ->  -e
( -oo +e B )  =  ( +oo +e  -e B ) )
113 xaddmnf2 9632 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
114 xnegeq 9610 . . . . . . . 8  |-  ( ( -oo +e B )  = -oo  ->  -e ( -oo +e B )  = 
-e -oo )
115113, 114syl 14 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  -e
( -oo +e B )  =  -e -oo )
116 xnegeq 9610 . . . . . . . . . . . 12  |-  (  -e B  = -oo  -> 
-e  -e
B  =  -e -oo )
117116, 42syl6eq 2188 . . . . . . . . . . 11  |-  (  -e B  = -oo  -> 
-e  -e
B  = +oo )
11879eqeq1d 2148 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  (  -e  -e B  = +oo  <->  B  = +oo ) )
119117, 118syl5ib 153 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  (  -e B  = -oo  ->  B  = +oo )
)
120119necon3d 2352 . . . . . . . . 9  |-  ( B  e.  RR*  ->  ( B  =/= +oo  ->  -e
B  =/= -oo )
)
121120imp 123 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  -e
B  =/= -oo )
122 xaddpnf2 9630 . . . . . . . 8  |-  ( ( 
-e B  e. 
RR*  /\  -e B  =/= -oo )  -> 
( +oo +e  -e B )  = +oo )
12376, 121, 122syl2an2r 584 . . . . . . 7  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( +oo +e  -e
B )  = +oo )
12442, 115, 1233eqtr4a 2198 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  -e
( -oo +e B )  =  ( +oo +e  -e B ) )
125 xrpnfdc 9625 . . . . . . . 8  |-  ( B  e.  RR*  -> DECID  B  = +oo )
126 exmiddc 821 . . . . . . . 8  |-  (DECID  B  = +oo  ->  ( B  = +oo  \/  -.  B  = +oo ) )
127125, 126syl 14 . . . . . . 7  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  -.  B  = +oo )
)
128 df-ne 2309 . . . . . . . 8  |-  ( B  =/= +oo  <->  -.  B  = +oo )
129128orbi2i 751 . . . . . . 7  |-  ( ( B  = +oo  \/  B  =/= +oo )  <->  ( B  = +oo  \/  -.  B  = +oo ) )
130127, 129sylibr 133 . . . . . 6  |-  ( B  e.  RR*  ->  ( B  = +oo  \/  B  =/= +oo ) )
131112, 124, 130mpjaodan 787 . . . . 5  |-  ( B  e.  RR*  ->  -e
( -oo +e B )  =  ( +oo +e  -e B ) )
132131adantl 275 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  -e ( -oo +e B )  =  ( +oo +e  -e B ) )
133 simpl 108 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  A  = -oo )
134133oveq1d 5789 . . . . 5  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
( A +e
B )  =  ( -oo +e B ) )
135 xnegeq 9610 . . . . 5  |-  ( ( A +e B )  =  ( -oo +e B )  ->  -e ( A +e B )  =  -e ( -oo +e B ) )
136134, 135syl 14 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  -e ( A +e B )  = 
-e ( -oo +e B ) )
137 xnegeq 9610 . . . . . . 7  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
138137adantr 274 . . . . . 6  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  -e A  =  -e -oo )
139138, 42syl6eq 2188 . . . . 5  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  -e A  = +oo )
140139oveq1d 5789 . . . 4  |-  ( ( A  = -oo  /\  B  e.  RR* )  -> 
(  -e A +e  -e B )  =  ( +oo +e  -e B ) )
141132, 136, 1403eqtr4d 2182 . . 3  |-  ( ( A  = -oo  /\  B  e.  RR* )  ->  -e ( A +e B )  =  (  -e A +e  -e
B ) )
14260, 103, 1413jaoian 1283 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR* )  ->  -e ( A +e B )  =  (  -e
A +e  -e B ) )
1431, 142sylanb 282 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    \/ w3o 961    = wceq 1331    e. wcel 1480    =/= wne 2308  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620    + caddc 7623   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799   -ucneg 7934    -ecxne 9556   +ecxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-sub 7935  df-neg 7936  df-xneg 9559  df-xadd 9560
This theorem is referenced by:  xaddass2  9653  xrminadd  11044
  Copyright terms: Public domain W3C validator