| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegdi | Unicode version | ||
| Description: Extended real version of negdi 8403. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9972 |
. 2
| |
| 2 | elxr 9972 |
. . . 4
| |
| 3 | recn 8132 |
. . . . . . . 8
| |
| 4 | recn 8132 |
. . . . . . . 8
| |
| 5 | negdi 8403 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . . . 7
|
| 7 | readdcl 8125 |
. . . . . . . 8
| |
| 8 | rexneg 10026 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 14 |
. . . . . . 7
|
| 10 | renegcl 8407 |
. . . . . . . 8
| |
| 11 | renegcl 8407 |
. . . . . . . 8
| |
| 12 | rexadd 10048 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2an 289 |
. . . . . . 7
|
| 14 | 6, 9, 13 | 3eqtr4d 2272 |
. . . . . 6
|
| 15 | rexadd 10048 |
. . . . . . 7
| |
| 16 | xnegeq 10023 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 14 |
. . . . . 6
|
| 18 | rexneg 10026 |
. . . . . . 7
| |
| 19 | rexneg 10026 |
. . . . . . 7
| |
| 20 | 18, 19 | oveqan12d 6020 |
. . . . . 6
|
| 21 | 14, 17, 20 | 3eqtr4d 2272 |
. . . . 5
|
| 22 | xnegpnf 10024 |
. . . . . 6
| |
| 23 | oveq2 6009 |
. . . . . . . 8
| |
| 24 | rexr 8192 |
. . . . . . . . 9
| |
| 25 | renemnf 8195 |
. . . . . . . . 9
| |
| 26 | xaddpnf1 10042 |
. . . . . . . . 9
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . . 8
|
| 28 | 23, 27 | sylan9eqr 2284 |
. . . . . . 7
|
| 29 | xnegeq 10023 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 14 |
. . . . . 6
|
| 31 | xnegeq 10023 |
. . . . . . . . 9
| |
| 32 | 31, 22 | eqtrdi 2278 |
. . . . . . . 8
|
| 33 | 32 | oveq2d 6017 |
. . . . . . 7
|
| 34 | 18, 10 | eqeltrd 2306 |
. . . . . . . 8
|
| 35 | rexr 8192 |
. . . . . . . . 9
| |
| 36 | renepnf 8194 |
. . . . . . . . 9
| |
| 37 | xaddmnf1 10044 |
. . . . . . . . 9
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . . . . . 8
|
| 39 | 34, 38 | syl 14 |
. . . . . . 7
|
| 40 | 33, 39 | sylan9eqr 2284 |
. . . . . 6
|
| 41 | 22, 30, 40 | 3eqtr4a 2288 |
. . . . 5
|
| 42 | xnegmnf 10025 |
. . . . . 6
| |
| 43 | oveq2 6009 |
. . . . . . . 8
| |
| 44 | renepnf 8194 |
. . . . . . . . 9
| |
| 45 | xaddmnf1 10044 |
. . . . . . . . 9
| |
| 46 | 24, 44, 45 | syl2anc 411 |
. . . . . . . 8
|
| 47 | 43, 46 | sylan9eqr 2284 |
. . . . . . 7
|
| 48 | xnegeq 10023 |
. . . . . . 7
| |
| 49 | 47, 48 | syl 14 |
. . . . . 6
|
| 50 | xnegeq 10023 |
. . . . . . . . 9
| |
| 51 | 50, 42 | eqtrdi 2278 |
. . . . . . . 8
|
| 52 | 51 | oveq2d 6017 |
. . . . . . 7
|
| 53 | renemnf 8195 |
. . . . . . . . 9
| |
| 54 | xaddpnf1 10042 |
. . . . . . . . 9
| |
| 55 | 35, 53, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | 34, 55 | syl 14 |
. . . . . . 7
|
| 57 | 52, 56 | sylan9eqr 2284 |
. . . . . 6
|
| 58 | 42, 49, 57 | 3eqtr4a 2288 |
. . . . 5
|
| 59 | 21, 41, 58 | 3jaodan 1340 |
. . . 4
|
| 60 | 2, 59 | sylan2b 287 |
. . 3
|
| 61 | xneg0 10027 |
. . . . . . 7
| |
| 62 | simpr 110 |
. . . . . . . . . 10
| |
| 63 | 62 | oveq2d 6017 |
. . . . . . . . 9
|
| 64 | pnfaddmnf 10046 |
. . . . . . . . 9
| |
| 65 | 63, 64 | eqtrdi 2278 |
. . . . . . . 8
|
| 66 | xnegeq 10023 |
. . . . . . . 8
| |
| 67 | 65, 66 | syl 14 |
. . . . . . 7
|
| 68 | 51 | adantl 277 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 6017 |
. . . . . . . 8
|
| 70 | mnfaddpnf 10047 |
. . . . . . . 8
| |
| 71 | 69, 70 | eqtrdi 2278 |
. . . . . . 7
|
| 72 | 61, 67, 71 | 3eqtr4a 2288 |
. . . . . 6
|
| 73 | xaddpnf2 10043 |
. . . . . . . 8
| |
| 74 | xnegeq 10023 |
. . . . . . . 8
| |
| 75 | 73, 74 | syl 14 |
. . . . . . 7
|
| 76 | xnegcl 10028 |
. . . . . . . 8
| |
| 77 | xnegeq 10023 |
. . . . . . . . . . . 12
| |
| 78 | 77, 22 | eqtrdi 2278 |
. . . . . . . . . . 11
|
| 79 | xnegneg 10029 |
. . . . . . . . . . . 12
| |
| 80 | 79 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 81 | 78, 80 | imbitrid 154 |
. . . . . . . . . 10
|
| 82 | 81 | necon3d 2444 |
. . . . . . . . 9
|
| 83 | 82 | imp 124 |
. . . . . . . 8
|
| 84 | xaddmnf2 10045 |
. . . . . . . 8
| |
| 85 | 76, 83, 84 | syl2an2r 597 |
. . . . . . 7
|
| 86 | 22, 75, 85 | 3eqtr4a 2288 |
. . . . . 6
|
| 87 | xrmnfdc 10039 |
. . . . . . . 8
| |
| 88 | exmiddc 841 |
. . . . . . . 8
| |
| 89 | 87, 88 | syl 14 |
. . . . . . 7
|
| 90 | df-ne 2401 |
. . . . . . . 8
| |
| 91 | 90 | orbi2i 767 |
. . . . . . 7
|
| 92 | 89, 91 | sylibr 134 |
. . . . . 6
|
| 93 | 72, 86, 92 | mpjaodan 803 |
. . . . 5
|
| 94 | 93 | adantl 277 |
. . . 4
|
| 95 | simpl 109 |
. . . . . 6
| |
| 96 | 95 | oveq1d 6016 |
. . . . 5
|
| 97 | xnegeq 10023 |
. . . . 5
| |
| 98 | 96, 97 | syl 14 |
. . . 4
|
| 99 | xnegeq 10023 |
. . . . . . 7
| |
| 100 | 99 | adantr 276 |
. . . . . 6
|
| 101 | 100, 22 | eqtrdi 2278 |
. . . . 5
|
| 102 | 101 | oveq1d 6016 |
. . . 4
|
| 103 | 94, 98, 102 | 3eqtr4d 2272 |
. . 3
|
| 104 | simpr 110 |
. . . . . . . . . 10
| |
| 105 | 104 | oveq2d 6017 |
. . . . . . . . 9
|
| 106 | 105, 70 | eqtrdi 2278 |
. . . . . . . 8
|
| 107 | xnegeq 10023 |
. . . . . . . 8
| |
| 108 | 106, 107 | syl 14 |
. . . . . . 7
|
| 109 | 32 | adantl 277 |
. . . . . . . . 9
|
| 110 | 109 | oveq2d 6017 |
. . . . . . . 8
|
| 111 | 110, 64 | eqtrdi 2278 |
. . . . . . 7
|
| 112 | 61, 108, 111 | 3eqtr4a 2288 |
. . . . . 6
|
| 113 | xaddmnf2 10045 |
. . . . . . . 8
| |
| 114 | xnegeq 10023 |
. . . . . . . 8
| |
| 115 | 113, 114 | syl 14 |
. . . . . . 7
|
| 116 | xnegeq 10023 |
. . . . . . . . . . . 12
| |
| 117 | 116, 42 | eqtrdi 2278 |
. . . . . . . . . . 11
|
| 118 | 79 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 119 | 117, 118 | imbitrid 154 |
. . . . . . . . . 10
|
| 120 | 119 | necon3d 2444 |
. . . . . . . . 9
|
| 121 | 120 | imp 124 |
. . . . . . . 8
|
| 122 | xaddpnf2 10043 |
. . . . . . . 8
| |
| 123 | 76, 121, 122 | syl2an2r 597 |
. . . . . . 7
|
| 124 | 42, 115, 123 | 3eqtr4a 2288 |
. . . . . 6
|
| 125 | xrpnfdc 10038 |
. . . . . . . 8
| |
| 126 | exmiddc 841 |
. . . . . . . 8
| |
| 127 | 125, 126 | syl 14 |
. . . . . . 7
|
| 128 | df-ne 2401 |
. . . . . . . 8
| |
| 129 | 128 | orbi2i 767 |
. . . . . . 7
|
| 130 | 127, 129 | sylibr 134 |
. . . . . 6
|
| 131 | 112, 124, 130 | mpjaodan 803 |
. . . . 5
|
| 132 | 131 | adantl 277 |
. . . 4
|
| 133 | simpl 109 |
. . . . . 6
| |
| 134 | 133 | oveq1d 6016 |
. . . . 5
|
| 135 | xnegeq 10023 |
. . . . 5
| |
| 136 | 134, 135 | syl 14 |
. . . 4
|
| 137 | xnegeq 10023 |
. . . . . . 7
| |
| 138 | 137 | adantr 276 |
. . . . . 6
|
| 139 | 138, 42 | eqtrdi 2278 |
. . . . 5
|
| 140 | 139 | oveq1d 6016 |
. . . 4
|
| 141 | 132, 136, 140 | 3eqtr4d 2272 |
. . 3
|
| 142 | 60, 103, 141 | 3jaoian 1339 |
. 2
|
| 143 | 1, 142 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-sub 8319 df-neg 8320 df-xneg 9968 df-xadd 9969 |
| This theorem is referenced by: xaddass2 10066 xrminadd 11786 |
| Copyright terms: Public domain | W3C validator |