Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegdi | Unicode version |
Description: Extended real version of negdi 8176. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9733 | . 2 | |
2 | elxr 9733 | . . . 4 | |
3 | recn 7907 | . . . . . . . 8 | |
4 | recn 7907 | . . . . . . . 8 | |
5 | negdi 8176 | . . . . . . . 8 | |
6 | 3, 4, 5 | syl2an 287 | . . . . . . 7 |
7 | readdcl 7900 | . . . . . . . 8 | |
8 | rexneg 9787 | . . . . . . . 8 | |
9 | 7, 8 | syl 14 | . . . . . . 7 |
10 | renegcl 8180 | . . . . . . . 8 | |
11 | renegcl 8180 | . . . . . . . 8 | |
12 | rexadd 9809 | . . . . . . . 8 | |
13 | 10, 11, 12 | syl2an 287 | . . . . . . 7 |
14 | 6, 9, 13 | 3eqtr4d 2213 | . . . . . 6 |
15 | rexadd 9809 | . . . . . . 7 | |
16 | xnegeq 9784 | . . . . . . 7 | |
17 | 15, 16 | syl 14 | . . . . . 6 |
18 | rexneg 9787 | . . . . . . 7 | |
19 | rexneg 9787 | . . . . . . 7 | |
20 | 18, 19 | oveqan12d 5872 | . . . . . 6 |
21 | 14, 17, 20 | 3eqtr4d 2213 | . . . . 5 |
22 | xnegpnf 9785 | . . . . . 6 | |
23 | oveq2 5861 | . . . . . . . 8 | |
24 | rexr 7965 | . . . . . . . . 9 | |
25 | renemnf 7968 | . . . . . . . . 9 | |
26 | xaddpnf1 9803 | . . . . . . . . 9 | |
27 | 24, 25, 26 | syl2anc 409 | . . . . . . . 8 |
28 | 23, 27 | sylan9eqr 2225 | . . . . . . 7 |
29 | xnegeq 9784 | . . . . . . 7 | |
30 | 28, 29 | syl 14 | . . . . . 6 |
31 | xnegeq 9784 | . . . . . . . . 9 | |
32 | 31, 22 | eqtrdi 2219 | . . . . . . . 8 |
33 | 32 | oveq2d 5869 | . . . . . . 7 |
34 | 18, 10 | eqeltrd 2247 | . . . . . . . 8 |
35 | rexr 7965 | . . . . . . . . 9 | |
36 | renepnf 7967 | . . . . . . . . 9 | |
37 | xaddmnf1 9805 | . . . . . . . . 9 | |
38 | 35, 36, 37 | syl2anc 409 | . . . . . . . 8 |
39 | 34, 38 | syl 14 | . . . . . . 7 |
40 | 33, 39 | sylan9eqr 2225 | . . . . . 6 |
41 | 22, 30, 40 | 3eqtr4a 2229 | . . . . 5 |
42 | xnegmnf 9786 | . . . . . 6 | |
43 | oveq2 5861 | . . . . . . . 8 | |
44 | renepnf 7967 | . . . . . . . . 9 | |
45 | xaddmnf1 9805 | . . . . . . . . 9 | |
46 | 24, 44, 45 | syl2anc 409 | . . . . . . . 8 |
47 | 43, 46 | sylan9eqr 2225 | . . . . . . 7 |
48 | xnegeq 9784 | . . . . . . 7 | |
49 | 47, 48 | syl 14 | . . . . . 6 |
50 | xnegeq 9784 | . . . . . . . . 9 | |
51 | 50, 42 | eqtrdi 2219 | . . . . . . . 8 |
52 | 51 | oveq2d 5869 | . . . . . . 7 |
53 | renemnf 7968 | . . . . . . . . 9 | |
54 | xaddpnf1 9803 | . . . . . . . . 9 | |
55 | 35, 53, 54 | syl2anc 409 | . . . . . . . 8 |
56 | 34, 55 | syl 14 | . . . . . . 7 |
57 | 52, 56 | sylan9eqr 2225 | . . . . . 6 |
58 | 42, 49, 57 | 3eqtr4a 2229 | . . . . 5 |
59 | 21, 41, 58 | 3jaodan 1301 | . . . 4 |
60 | 2, 59 | sylan2b 285 | . . 3 |
61 | xneg0 9788 | . . . . . . 7 | |
62 | simpr 109 | . . . . . . . . . 10 | |
63 | 62 | oveq2d 5869 | . . . . . . . . 9 |
64 | pnfaddmnf 9807 | . . . . . . . . 9 | |
65 | 63, 64 | eqtrdi 2219 | . . . . . . . 8 |
66 | xnegeq 9784 | . . . . . . . 8 | |
67 | 65, 66 | syl 14 | . . . . . . 7 |
68 | 51 | adantl 275 | . . . . . . . . 9 |
69 | 68 | oveq2d 5869 | . . . . . . . 8 |
70 | mnfaddpnf 9808 | . . . . . . . 8 | |
71 | 69, 70 | eqtrdi 2219 | . . . . . . 7 |
72 | 61, 67, 71 | 3eqtr4a 2229 | . . . . . 6 |
73 | xaddpnf2 9804 | . . . . . . . 8 | |
74 | xnegeq 9784 | . . . . . . . 8 | |
75 | 73, 74 | syl 14 | . . . . . . 7 |
76 | xnegcl 9789 | . . . . . . . 8 | |
77 | xnegeq 9784 | . . . . . . . . . . . 12 | |
78 | 77, 22 | eqtrdi 2219 | . . . . . . . . . . 11 |
79 | xnegneg 9790 | . . . . . . . . . . . 12 | |
80 | 79 | eqeq1d 2179 | . . . . . . . . . . 11 |
81 | 78, 80 | syl5ib 153 | . . . . . . . . . 10 |
82 | 81 | necon3d 2384 | . . . . . . . . 9 |
83 | 82 | imp 123 | . . . . . . . 8 |
84 | xaddmnf2 9806 | . . . . . . . 8 | |
85 | 76, 83, 84 | syl2an2r 590 | . . . . . . 7 |
86 | 22, 75, 85 | 3eqtr4a 2229 | . . . . . 6 |
87 | xrmnfdc 9800 | . . . . . . . 8 DECID | |
88 | exmiddc 831 | . . . . . . . 8 DECID | |
89 | 87, 88 | syl 14 | . . . . . . 7 |
90 | df-ne 2341 | . . . . . . . 8 | |
91 | 90 | orbi2i 757 | . . . . . . 7 |
92 | 89, 91 | sylibr 133 | . . . . . 6 |
93 | 72, 86, 92 | mpjaodan 793 | . . . . 5 |
94 | 93 | adantl 275 | . . . 4 |
95 | simpl 108 | . . . . . 6 | |
96 | 95 | oveq1d 5868 | . . . . 5 |
97 | xnegeq 9784 | . . . . 5 | |
98 | 96, 97 | syl 14 | . . . 4 |
99 | xnegeq 9784 | . . . . . . 7 | |
100 | 99 | adantr 274 | . . . . . 6 |
101 | 100, 22 | eqtrdi 2219 | . . . . 5 |
102 | 101 | oveq1d 5868 | . . . 4 |
103 | 94, 98, 102 | 3eqtr4d 2213 | . . 3 |
104 | simpr 109 | . . . . . . . . . 10 | |
105 | 104 | oveq2d 5869 | . . . . . . . . 9 |
106 | 105, 70 | eqtrdi 2219 | . . . . . . . 8 |
107 | xnegeq 9784 | . . . . . . . 8 | |
108 | 106, 107 | syl 14 | . . . . . . 7 |
109 | 32 | adantl 275 | . . . . . . . . 9 |
110 | 109 | oveq2d 5869 | . . . . . . . 8 |
111 | 110, 64 | eqtrdi 2219 | . . . . . . 7 |
112 | 61, 108, 111 | 3eqtr4a 2229 | . . . . . 6 |
113 | xaddmnf2 9806 | . . . . . . . 8 | |
114 | xnegeq 9784 | . . . . . . . 8 | |
115 | 113, 114 | syl 14 | . . . . . . 7 |
116 | xnegeq 9784 | . . . . . . . . . . . 12 | |
117 | 116, 42 | eqtrdi 2219 | . . . . . . . . . . 11 |
118 | 79 | eqeq1d 2179 | . . . . . . . . . . 11 |
119 | 117, 118 | syl5ib 153 | . . . . . . . . . 10 |
120 | 119 | necon3d 2384 | . . . . . . . . 9 |
121 | 120 | imp 123 | . . . . . . . 8 |
122 | xaddpnf2 9804 | . . . . . . . 8 | |
123 | 76, 121, 122 | syl2an2r 590 | . . . . . . 7 |
124 | 42, 115, 123 | 3eqtr4a 2229 | . . . . . 6 |
125 | xrpnfdc 9799 | . . . . . . . 8 DECID | |
126 | exmiddc 831 | . . . . . . . 8 DECID | |
127 | 125, 126 | syl 14 | . . . . . . 7 |
128 | df-ne 2341 | . . . . . . . 8 | |
129 | 128 | orbi2i 757 | . . . . . . 7 |
130 | 127, 129 | sylibr 133 | . . . . . 6 |
131 | 112, 124, 130 | mpjaodan 793 | . . . . 5 |
132 | 131 | adantl 275 | . . . 4 |
133 | simpl 108 | . . . . . 6 | |
134 | 133 | oveq1d 5868 | . . . . 5 |
135 | xnegeq 9784 | . . . . 5 | |
136 | 134, 135 | syl 14 | . . . 4 |
137 | xnegeq 9784 | . . . . . . 7 | |
138 | 137 | adantr 274 | . . . . . 6 |
139 | 138, 42 | eqtrdi 2219 | . . . . 5 |
140 | 139 | oveq1d 5868 | . . . 4 |
141 | 132, 136, 140 | 3eqtr4d 2213 | . . 3 |
142 | 60, 103, 141 | 3jaoian 1300 | . 2 |
143 | 1, 142 | sylanb 282 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 wne 2340 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 cneg 8091 cxne 9726 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-sub 8092 df-neg 8093 df-xneg 9729 df-xadd 9730 |
This theorem is referenced by: xaddass2 9827 xrminadd 11238 |
Copyright terms: Public domain | W3C validator |