| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegdi | Unicode version | ||
| Description: Extended real version of negdi 8283. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9851 |
. 2
| |
| 2 | elxr 9851 |
. . . 4
| |
| 3 | recn 8012 |
. . . . . . . 8
| |
| 4 | recn 8012 |
. . . . . . . 8
| |
| 5 | negdi 8283 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . . . 7
|
| 7 | readdcl 8005 |
. . . . . . . 8
| |
| 8 | rexneg 9905 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 14 |
. . . . . . 7
|
| 10 | renegcl 8287 |
. . . . . . . 8
| |
| 11 | renegcl 8287 |
. . . . . . . 8
| |
| 12 | rexadd 9927 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2an 289 |
. . . . . . 7
|
| 14 | 6, 9, 13 | 3eqtr4d 2239 |
. . . . . 6
|
| 15 | rexadd 9927 |
. . . . . . 7
| |
| 16 | xnegeq 9902 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 14 |
. . . . . 6
|
| 18 | rexneg 9905 |
. . . . . . 7
| |
| 19 | rexneg 9905 |
. . . . . . 7
| |
| 20 | 18, 19 | oveqan12d 5941 |
. . . . . 6
|
| 21 | 14, 17, 20 | 3eqtr4d 2239 |
. . . . 5
|
| 22 | xnegpnf 9903 |
. . . . . 6
| |
| 23 | oveq2 5930 |
. . . . . . . 8
| |
| 24 | rexr 8072 |
. . . . . . . . 9
| |
| 25 | renemnf 8075 |
. . . . . . . . 9
| |
| 26 | xaddpnf1 9921 |
. . . . . . . . 9
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . . 8
|
| 28 | 23, 27 | sylan9eqr 2251 |
. . . . . . 7
|
| 29 | xnegeq 9902 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 14 |
. . . . . 6
|
| 31 | xnegeq 9902 |
. . . . . . . . 9
| |
| 32 | 31, 22 | eqtrdi 2245 |
. . . . . . . 8
|
| 33 | 32 | oveq2d 5938 |
. . . . . . 7
|
| 34 | 18, 10 | eqeltrd 2273 |
. . . . . . . 8
|
| 35 | rexr 8072 |
. . . . . . . . 9
| |
| 36 | renepnf 8074 |
. . . . . . . . 9
| |
| 37 | xaddmnf1 9923 |
. . . . . . . . 9
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . . . . . 8
|
| 39 | 34, 38 | syl 14 |
. . . . . . 7
|
| 40 | 33, 39 | sylan9eqr 2251 |
. . . . . 6
|
| 41 | 22, 30, 40 | 3eqtr4a 2255 |
. . . . 5
|
| 42 | xnegmnf 9904 |
. . . . . 6
| |
| 43 | oveq2 5930 |
. . . . . . . 8
| |
| 44 | renepnf 8074 |
. . . . . . . . 9
| |
| 45 | xaddmnf1 9923 |
. . . . . . . . 9
| |
| 46 | 24, 44, 45 | syl2anc 411 |
. . . . . . . 8
|
| 47 | 43, 46 | sylan9eqr 2251 |
. . . . . . 7
|
| 48 | xnegeq 9902 |
. . . . . . 7
| |
| 49 | 47, 48 | syl 14 |
. . . . . 6
|
| 50 | xnegeq 9902 |
. . . . . . . . 9
| |
| 51 | 50, 42 | eqtrdi 2245 |
. . . . . . . 8
|
| 52 | 51 | oveq2d 5938 |
. . . . . . 7
|
| 53 | renemnf 8075 |
. . . . . . . . 9
| |
| 54 | xaddpnf1 9921 |
. . . . . . . . 9
| |
| 55 | 35, 53, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | 34, 55 | syl 14 |
. . . . . . 7
|
| 57 | 52, 56 | sylan9eqr 2251 |
. . . . . 6
|
| 58 | 42, 49, 57 | 3eqtr4a 2255 |
. . . . 5
|
| 59 | 21, 41, 58 | 3jaodan 1317 |
. . . 4
|
| 60 | 2, 59 | sylan2b 287 |
. . 3
|
| 61 | xneg0 9906 |
. . . . . . 7
| |
| 62 | simpr 110 |
. . . . . . . . . 10
| |
| 63 | 62 | oveq2d 5938 |
. . . . . . . . 9
|
| 64 | pnfaddmnf 9925 |
. . . . . . . . 9
| |
| 65 | 63, 64 | eqtrdi 2245 |
. . . . . . . 8
|
| 66 | xnegeq 9902 |
. . . . . . . 8
| |
| 67 | 65, 66 | syl 14 |
. . . . . . 7
|
| 68 | 51 | adantl 277 |
. . . . . . . . 9
|
| 69 | 68 | oveq2d 5938 |
. . . . . . . 8
|
| 70 | mnfaddpnf 9926 |
. . . . . . . 8
| |
| 71 | 69, 70 | eqtrdi 2245 |
. . . . . . 7
|
| 72 | 61, 67, 71 | 3eqtr4a 2255 |
. . . . . 6
|
| 73 | xaddpnf2 9922 |
. . . . . . . 8
| |
| 74 | xnegeq 9902 |
. . . . . . . 8
| |
| 75 | 73, 74 | syl 14 |
. . . . . . 7
|
| 76 | xnegcl 9907 |
. . . . . . . 8
| |
| 77 | xnegeq 9902 |
. . . . . . . . . . . 12
| |
| 78 | 77, 22 | eqtrdi 2245 |
. . . . . . . . . . 11
|
| 79 | xnegneg 9908 |
. . . . . . . . . . . 12
| |
| 80 | 79 | eqeq1d 2205 |
. . . . . . . . . . 11
|
| 81 | 78, 80 | imbitrid 154 |
. . . . . . . . . 10
|
| 82 | 81 | necon3d 2411 |
. . . . . . . . 9
|
| 83 | 82 | imp 124 |
. . . . . . . 8
|
| 84 | xaddmnf2 9924 |
. . . . . . . 8
| |
| 85 | 76, 83, 84 | syl2an2r 595 |
. . . . . . 7
|
| 86 | 22, 75, 85 | 3eqtr4a 2255 |
. . . . . 6
|
| 87 | xrmnfdc 9918 |
. . . . . . . 8
| |
| 88 | exmiddc 837 |
. . . . . . . 8
| |
| 89 | 87, 88 | syl 14 |
. . . . . . 7
|
| 90 | df-ne 2368 |
. . . . . . . 8
| |
| 91 | 90 | orbi2i 763 |
. . . . . . 7
|
| 92 | 89, 91 | sylibr 134 |
. . . . . 6
|
| 93 | 72, 86, 92 | mpjaodan 799 |
. . . . 5
|
| 94 | 93 | adantl 277 |
. . . 4
|
| 95 | simpl 109 |
. . . . . 6
| |
| 96 | 95 | oveq1d 5937 |
. . . . 5
|
| 97 | xnegeq 9902 |
. . . . 5
| |
| 98 | 96, 97 | syl 14 |
. . . 4
|
| 99 | xnegeq 9902 |
. . . . . . 7
| |
| 100 | 99 | adantr 276 |
. . . . . 6
|
| 101 | 100, 22 | eqtrdi 2245 |
. . . . 5
|
| 102 | 101 | oveq1d 5937 |
. . . 4
|
| 103 | 94, 98, 102 | 3eqtr4d 2239 |
. . 3
|
| 104 | simpr 110 |
. . . . . . . . . 10
| |
| 105 | 104 | oveq2d 5938 |
. . . . . . . . 9
|
| 106 | 105, 70 | eqtrdi 2245 |
. . . . . . . 8
|
| 107 | xnegeq 9902 |
. . . . . . . 8
| |
| 108 | 106, 107 | syl 14 |
. . . . . . 7
|
| 109 | 32 | adantl 277 |
. . . . . . . . 9
|
| 110 | 109 | oveq2d 5938 |
. . . . . . . 8
|
| 111 | 110, 64 | eqtrdi 2245 |
. . . . . . 7
|
| 112 | 61, 108, 111 | 3eqtr4a 2255 |
. . . . . 6
|
| 113 | xaddmnf2 9924 |
. . . . . . . 8
| |
| 114 | xnegeq 9902 |
. . . . . . . 8
| |
| 115 | 113, 114 | syl 14 |
. . . . . . 7
|
| 116 | xnegeq 9902 |
. . . . . . . . . . . 12
| |
| 117 | 116, 42 | eqtrdi 2245 |
. . . . . . . . . . 11
|
| 118 | 79 | eqeq1d 2205 |
. . . . . . . . . . 11
|
| 119 | 117, 118 | imbitrid 154 |
. . . . . . . . . 10
|
| 120 | 119 | necon3d 2411 |
. . . . . . . . 9
|
| 121 | 120 | imp 124 |
. . . . . . . 8
|
| 122 | xaddpnf2 9922 |
. . . . . . . 8
| |
| 123 | 76, 121, 122 | syl2an2r 595 |
. . . . . . 7
|
| 124 | 42, 115, 123 | 3eqtr4a 2255 |
. . . . . 6
|
| 125 | xrpnfdc 9917 |
. . . . . . . 8
| |
| 126 | exmiddc 837 |
. . . . . . . 8
| |
| 127 | 125, 126 | syl 14 |
. . . . . . 7
|
| 128 | df-ne 2368 |
. . . . . . . 8
| |
| 129 | 128 | orbi2i 763 |
. . . . . . 7
|
| 130 | 127, 129 | sylibr 134 |
. . . . . 6
|
| 131 | 112, 124, 130 | mpjaodan 799 |
. . . . 5
|
| 132 | 131 | adantl 277 |
. . . 4
|
| 133 | simpl 109 |
. . . . . 6
| |
| 134 | 133 | oveq1d 5937 |
. . . . 5
|
| 135 | xnegeq 9902 |
. . . . 5
| |
| 136 | 134, 135 | syl 14 |
. . . 4
|
| 137 | xnegeq 9902 |
. . . . . . 7
| |
| 138 | 137 | adantr 276 |
. . . . . 6
|
| 139 | 138, 42 | eqtrdi 2245 |
. . . . 5
|
| 140 | 139 | oveq1d 5937 |
. . . 4
|
| 141 | 132, 136, 140 | 3eqtr4d 2239 |
. . 3
|
| 142 | 60, 103, 141 | 3jaoian 1316 |
. 2
|
| 143 | 1, 142 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-sub 8199 df-neg 8200 df-xneg 9847 df-xadd 9848 |
| This theorem is referenced by: xaddass2 9945 xrminadd 11440 |
| Copyright terms: Public domain | W3C validator |