ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttri3 Unicode version

Theorem xrlttri3 9863
Description: Extended real version of lttri3 8099. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrlttri3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )

Proof of Theorem xrlttri3
StepHypRef Expression
1 elxr 9842 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9842 . 2  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 lttri3 8099 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
43ancoms 268 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
5 renepnf 8067 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  =/= +oo )
65adantr 276 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  =/= +oo )
7 neeq2 2378 . . . . . . . . . 10  |-  ( A  = +oo  ->  ( B  =/=  A  <->  B  =/= +oo ) )
87adantl 277 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  ( B  =/=  A  <->  B  =/= +oo ) )
96, 8mpbird 167 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  =/=  A )
109necomd 2450 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  A  =/=  B )
1110neneqd 2385 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  -.  A  =  B )
12 ltpnf 9846 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  < +oo )
1312adantr 276 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  < +oo )
14 breq2 4033 . . . . . . . . 9  |-  ( A  = +oo  ->  ( B  <  A  <->  B  < +oo ) )
1514adantl 277 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  ( B  <  A  <->  B  < +oo ) )
1613, 15mpbird 167 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  <  A )
17 notnot 630 . . . . . . . . 9  |-  ( ( A  <  B  \/  B  <  A )  ->  -.  -.  ( A  < 
B  \/  B  < 
A ) )
1817olcs 737 . . . . . . . 8  |-  ( B  <  A  ->  -.  -.  ( A  <  B  \/  B  <  A ) )
19 ioran 753 . . . . . . . 8  |-  ( -.  ( A  <  B  \/  B  <  A )  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) )
2018, 19sylnib 677 . . . . . . 7  |-  ( B  <  A  ->  -.  ( -.  A  <  B  /\  -.  B  < 
A ) )
2116, 20syl 14 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
2211, 212falsed 703 . . . . 5  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
23 renemnf 8068 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  =/= -oo )
2423adantr 276 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  B  =/= -oo )
25 neeq2 2378 . . . . . . . . . 10  |-  ( A  = -oo  ->  ( B  =/=  A  <->  B  =/= -oo ) )
2625adantl 277 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  ( B  =/=  A  <->  B  =/= -oo ) )
2724, 26mpbird 167 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  B  =/=  A )
2827necomd 2450 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  A  =/=  B )
2928neneqd 2385 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  -.  A  =  B )
30 mnflt 9849 . . . . . . . . 9  |-  ( B  e.  RR  -> -oo  <  B )
3130adantr 276 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = -oo )  -> -oo  <  B )
32 breq1 4032 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  <  B  <-> -oo  <  B
) )
3332adantl 277 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  ( A  <  B  <-> -oo 
<  B ) )
3431, 33mpbird 167 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  A  <  B )
35 orc 713 . . . . . . 7  |-  ( A  <  B  ->  ( A  <  B  \/  B  <  A ) )
36 oranim 782 . . . . . . 7  |-  ( ( A  <  B  \/  B  <  A )  ->  -.  ( -.  A  < 
B  /\  -.  B  <  A ) )
3734, 35, 363syl 17 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
3829, 372falsed 703 . . . . 5  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
394, 22, 383jaodan 1317 . . . 4  |-  ( ( B  e.  RR  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
4039ancoms 268 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
41 renepnf 8067 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= +oo )
4241adantl 277 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  =/= +oo )
43 neeq2 2378 . . . . . . . . 9  |-  ( B  = +oo  ->  ( A  =/=  B  <->  A  =/= +oo ) )
4443adantr 276 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  ( A  =/=  B  <->  A  =/= +oo ) )
4542, 44mpbird 167 . . . . . . 7  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  =/=  B )
4645neneqd 2385 . . . . . 6  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  -.  A  =  B )
47 ltpnf 9846 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  < +oo )
4847adantl 277 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  < +oo )
49 breq2 4033 . . . . . . . . 9  |-  ( B  = +oo  ->  ( A  <  B  <->  A  < +oo ) )
5049adantr 276 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  ( A  <  B  <->  A  < +oo ) )
5148, 50mpbird 167 . . . . . . 7  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  <  B )
5251, 35, 363syl 17 . . . . . 6  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
5346, 522falsed 703 . . . . 5  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
54 eqtr3 2213 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = +oo )  ->  B  =  A )
5554eqcomd 2199 . . . . . 6  |-  ( ( B  = +oo  /\  A  = +oo )  ->  A  =  B )
56 pnfxr 8072 . . . . . . . . 9  |- +oo  e.  RR*
57 xrltnr 9845 . . . . . . . . 9  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
5856, 57ax-mp 5 . . . . . . . 8  |-  -. +oo  < +oo
59 breq12 4034 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( A  <  B  <-> +oo 
< +oo ) )
6059ancoms 268 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( A  <  B  <-> +oo 
< +oo ) )
6158, 60mtbiri 676 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = +oo )  ->  -.  A  <  B
)
62 breq12 4034 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( B  <  A  <-> +oo 
< +oo ) )
6358, 62mtbiri 676 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = +oo )  ->  -.  B  <  A
)
6461, 63jca 306 . . . . . 6  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( -.  A  < 
B  /\  -.  B  <  A ) )
6555, 642thd 175 . . . . 5  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
66 mnfnepnf 8075 . . . . . . . . 9  |- -oo  =/= +oo
67 eqeq12 2206 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  =  B  <-> -oo  = +oo )
)
6867necon3bid 2405 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  =/=  B  <-> -oo 
=/= +oo ) )
6966, 68mpbiri 168 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = +oo )  ->  A  =/=  B )
7069ancoms 268 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = -oo )  ->  A  =/=  B )
7170neneqd 2385 . . . . . 6  |-  ( ( B  = +oo  /\  A  = -oo )  ->  -.  A  =  B )
72 mnfltpnf 9851 . . . . . . . . 9  |- -oo  < +oo
73 breq12 4034 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  <-> -oo 
< +oo ) )
7472, 73mpbiri 168 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = +oo )  ->  A  <  B )
7574ancoms 268 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = -oo )  ->  A  <  B )
7675, 35, 363syl 17 . . . . . 6  |-  ( ( B  = +oo  /\  A  = -oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
7771, 762falsed 703 . . . . 5  |-  ( ( B  = +oo  /\  A  = -oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
7853, 65, 773jaodan 1317 . . . 4  |-  ( ( B  = +oo  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
7978ancoms 268 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  = +oo )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
80 renemnf 8068 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= -oo )
8180adantl 277 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  A  =/= -oo )
82 neeq2 2378 . . . . . . . . 9  |-  ( B  = -oo  ->  ( A  =/=  B  <->  A  =/= -oo ) )
8382adantr 276 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  ( A  =/=  B  <->  A  =/= -oo ) )
8481, 83mpbird 167 . . . . . . 7  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  A  =/=  B )
8584neneqd 2385 . . . . . 6  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  -.  A  =  B )
86 mnflt 9849 . . . . . . . . 9  |-  ( A  e.  RR  -> -oo  <  A )
8786adantl 277 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  -> -oo  <  A )
88 breq1 4032 . . . . . . . . 9  |-  ( B  = -oo  ->  ( B  <  A  <-> -oo  <  A
) )
8988adantr 276 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  ( B  <  A  <-> -oo 
<  A ) )
9087, 89mpbird 167 . . . . . . 7  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  B  <  A )
9190, 20syl 14 . . . . . 6  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
9285, 912falsed 703 . . . . 5  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
9366neii 2366 . . . . . . . . . 10  |-  -. -oo  = +oo
94 eqeq12 2206 . . . . . . . . . 10  |-  ( ( B  = -oo  /\  A  = +oo )  ->  ( B  =  A  <-> -oo  = +oo )
)
9593, 94mtbiri 676 . . . . . . . . 9  |-  ( ( B  = -oo  /\  A  = +oo )  ->  -.  B  =  A )
9695neneqad 2443 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = +oo )  ->  B  =/=  A )
9796necomd 2450 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = +oo )  ->  A  =/=  B )
9897neneqd 2385 . . . . . 6  |-  ( ( B  = -oo  /\  A  = +oo )  ->  -.  A  =  B )
99 breq12 4034 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = +oo )  ->  ( B  <  A  <-> -oo 
< +oo ) )
10072, 99mpbiri 168 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = +oo )  ->  B  <  A )
101100, 20syl 14 . . . . . 6  |-  ( ( B  = -oo  /\  A  = +oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
10298, 1012falsed 703 . . . . 5  |-  ( ( B  = -oo  /\  A  = +oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
103 eqtr3 2213 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = -oo )  ->  A  =  B )
104103ancoms 268 . . . . . 6  |-  ( ( B  = -oo  /\  A  = -oo )  ->  A  =  B )
105 mnfxr 8076 . . . . . . . . 9  |- -oo  e.  RR*
106 xrltnr 9845 . . . . . . . . 9  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
107105, 106ax-mp 5 . . . . . . . 8  |-  -. -oo  < -oo
108 breq12 4034 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  <-> -oo 
< -oo ) )
109108ancoms 268 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( A  <  B  <-> -oo 
< -oo ) )
110107, 109mtbiri 676 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = -oo )  ->  -.  A  <  B
)
111 breq12 4034 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( B  <  A  <-> -oo 
< -oo ) )
112107, 111mtbiri 676 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = -oo )  ->  -.  B  <  A
)
113110, 112jca 306 . . . . . 6  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( -.  A  < 
B  /\  -.  B  <  A ) )
114104, 1132thd 175 . . . . 5  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
11592, 102, 1143jaodan 1317 . . . 4  |-  ( ( B  = -oo  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
116115ancoms 268 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  = -oo )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
11740, 79, 1163jaodan 1317 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
1181, 2, 117syl2anb 291 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029   RRcr 7871   +oocpnf 8051   -oocmnf 8052   RR*cxr 8053    < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059
This theorem is referenced by:  xrletri3  9870  iccid  9991  xrmaxleim  11387  xrmaxif  11394  xrmaxaddlem  11403  infxrnegsupex  11406  bdxmet  14669
  Copyright terms: Public domain W3C validator