ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttri3 Unicode version

Theorem xrlttri3 9993
Description: Extended real version of lttri3 8226. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrlttri3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )

Proof of Theorem xrlttri3
StepHypRef Expression
1 elxr 9972 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9972 . 2  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 lttri3 8226 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
43ancoms 268 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
5 renepnf 8194 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  =/= +oo )
65adantr 276 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  =/= +oo )
7 neeq2 2414 . . . . . . . . . 10  |-  ( A  = +oo  ->  ( B  =/=  A  <->  B  =/= +oo ) )
87adantl 277 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  ( B  =/=  A  <->  B  =/= +oo ) )
96, 8mpbird 167 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  =/=  A )
109necomd 2486 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  A  =/=  B )
1110neneqd 2421 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  -.  A  =  B )
12 ltpnf 9976 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  < +oo )
1312adantr 276 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  < +oo )
14 breq2 4087 . . . . . . . . 9  |-  ( A  = +oo  ->  ( B  <  A  <->  B  < +oo ) )
1514adantl 277 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  ( B  <  A  <->  B  < +oo ) )
1613, 15mpbird 167 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  B  <  A )
17 notnot 632 . . . . . . . . 9  |-  ( ( A  <  B  \/  B  <  A )  ->  -.  -.  ( A  < 
B  \/  B  < 
A ) )
1817olcs 741 . . . . . . . 8  |-  ( B  <  A  ->  -.  -.  ( A  <  B  \/  B  <  A ) )
19 ioran 757 . . . . . . . 8  |-  ( -.  ( A  <  B  \/  B  <  A )  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) )
2018, 19sylnib 680 . . . . . . 7  |-  ( B  <  A  ->  -.  ( -.  A  <  B  /\  -.  B  < 
A ) )
2116, 20syl 14 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
2211, 212falsed 707 . . . . 5  |-  ( ( B  e.  RR  /\  A  = +oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
23 renemnf 8195 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  =/= -oo )
2423adantr 276 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  B  =/= -oo )
25 neeq2 2414 . . . . . . . . . 10  |-  ( A  = -oo  ->  ( B  =/=  A  <->  B  =/= -oo ) )
2625adantl 277 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  ( B  =/=  A  <->  B  =/= -oo ) )
2724, 26mpbird 167 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  B  =/=  A )
2827necomd 2486 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  A  =/=  B )
2928neneqd 2421 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  -.  A  =  B )
30 mnflt 9979 . . . . . . . . 9  |-  ( B  e.  RR  -> -oo  <  B )
3130adantr 276 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = -oo )  -> -oo  <  B )
32 breq1 4086 . . . . . . . . 9  |-  ( A  = -oo  ->  ( A  <  B  <-> -oo  <  B
) )
3332adantl 277 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  ( A  <  B  <-> -oo 
<  B ) )
3431, 33mpbird 167 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  A  <  B )
35 orc 717 . . . . . . 7  |-  ( A  <  B  ->  ( A  <  B  \/  B  <  A ) )
36 oranim 786 . . . . . . 7  |-  ( ( A  <  B  \/  B  <  A )  ->  -.  ( -.  A  < 
B  /\  -.  B  <  A ) )
3734, 35, 363syl 17 . . . . . 6  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
3829, 372falsed 707 . . . . 5  |-  ( ( B  e.  RR  /\  A  = -oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
394, 22, 383jaodan 1340 . . . 4  |-  ( ( B  e.  RR  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
4039ancoms 268 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  e.  RR )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
41 renepnf 8194 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= +oo )
4241adantl 277 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  =/= +oo )
43 neeq2 2414 . . . . . . . . 9  |-  ( B  = +oo  ->  ( A  =/=  B  <->  A  =/= +oo ) )
4443adantr 276 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  ( A  =/=  B  <->  A  =/= +oo ) )
4542, 44mpbird 167 . . . . . . 7  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  =/=  B )
4645neneqd 2421 . . . . . 6  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  -.  A  =  B )
47 ltpnf 9976 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  < +oo )
4847adantl 277 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  < +oo )
49 breq2 4087 . . . . . . . . 9  |-  ( B  = +oo  ->  ( A  <  B  <->  A  < +oo ) )
5049adantr 276 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  ( A  <  B  <->  A  < +oo ) )
5148, 50mpbird 167 . . . . . . 7  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  A  <  B )
5251, 35, 363syl 17 . . . . . 6  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
5346, 522falsed 707 . . . . 5  |-  ( ( B  = +oo  /\  A  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
54 eqtr3 2249 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = +oo )  ->  B  =  A )
5554eqcomd 2235 . . . . . 6  |-  ( ( B  = +oo  /\  A  = +oo )  ->  A  =  B )
56 pnfxr 8199 . . . . . . . . 9  |- +oo  e.  RR*
57 xrltnr 9975 . . . . . . . . 9  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
5856, 57ax-mp 5 . . . . . . . 8  |-  -. +oo  < +oo
59 breq12 4088 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( A  <  B  <-> +oo 
< +oo ) )
6059ancoms 268 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( A  <  B  <-> +oo 
< +oo ) )
6158, 60mtbiri 679 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = +oo )  ->  -.  A  <  B
)
62 breq12 4088 . . . . . . . 8  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( B  <  A  <-> +oo 
< +oo ) )
6358, 62mtbiri 679 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = +oo )  ->  -.  B  <  A
)
6461, 63jca 306 . . . . . 6  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( -.  A  < 
B  /\  -.  B  <  A ) )
6555, 642thd 175 . . . . 5  |-  ( ( B  = +oo  /\  A  = +oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
66 mnfnepnf 8202 . . . . . . . . 9  |- -oo  =/= +oo
67 eqeq12 2242 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  =  B  <-> -oo  = +oo )
)
6867necon3bid 2441 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  =/=  B  <-> -oo 
=/= +oo ) )
6966, 68mpbiri 168 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = +oo )  ->  A  =/=  B )
7069ancoms 268 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = -oo )  ->  A  =/=  B )
7170neneqd 2421 . . . . . 6  |-  ( ( B  = +oo  /\  A  = -oo )  ->  -.  A  =  B )
72 mnfltpnf 9981 . . . . . . . . 9  |- -oo  < +oo
73 breq12 4088 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  <-> -oo 
< +oo ) )
7472, 73mpbiri 168 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = +oo )  ->  A  <  B )
7574ancoms 268 . . . . . . 7  |-  ( ( B  = +oo  /\  A  = -oo )  ->  A  <  B )
7675, 35, 363syl 17 . . . . . 6  |-  ( ( B  = +oo  /\  A  = -oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
7771, 762falsed 707 . . . . 5  |-  ( ( B  = +oo  /\  A  = -oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
7853, 65, 773jaodan 1340 . . . 4  |-  ( ( B  = +oo  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
7978ancoms 268 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  = +oo )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
80 renemnf 8195 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= -oo )
8180adantl 277 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  A  =/= -oo )
82 neeq2 2414 . . . . . . . . 9  |-  ( B  = -oo  ->  ( A  =/=  B  <->  A  =/= -oo ) )
8382adantr 276 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  ( A  =/=  B  <->  A  =/= -oo ) )
8481, 83mpbird 167 . . . . . . 7  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  A  =/=  B )
8584neneqd 2421 . . . . . 6  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  -.  A  =  B )
86 mnflt 9979 . . . . . . . . 9  |-  ( A  e.  RR  -> -oo  <  A )
8786adantl 277 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  -> -oo  <  A )
88 breq1 4086 . . . . . . . . 9  |-  ( B  = -oo  ->  ( B  <  A  <-> -oo  <  A
) )
8988adantr 276 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  ( B  <  A  <-> -oo 
<  A ) )
9087, 89mpbird 167 . . . . . . 7  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  B  <  A )
9190, 20syl 14 . . . . . 6  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
9285, 912falsed 707 . . . . 5  |-  ( ( B  = -oo  /\  A  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
9366neii 2402 . . . . . . . . . 10  |-  -. -oo  = +oo
94 eqeq12 2242 . . . . . . . . . 10  |-  ( ( B  = -oo  /\  A  = +oo )  ->  ( B  =  A  <-> -oo  = +oo )
)
9593, 94mtbiri 679 . . . . . . . . 9  |-  ( ( B  = -oo  /\  A  = +oo )  ->  -.  B  =  A )
9695neneqad 2479 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = +oo )  ->  B  =/=  A )
9796necomd 2486 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = +oo )  ->  A  =/=  B )
9897neneqd 2421 . . . . . 6  |-  ( ( B  = -oo  /\  A  = +oo )  ->  -.  A  =  B )
99 breq12 4088 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = +oo )  ->  ( B  <  A  <-> -oo 
< +oo ) )
10072, 99mpbiri 168 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = +oo )  ->  B  <  A )
101100, 20syl 14 . . . . . 6  |-  ( ( B  = -oo  /\  A  = +oo )  ->  -.  ( -.  A  <  B  /\  -.  B  <  A ) )
10298, 1012falsed 707 . . . . 5  |-  ( ( B  = -oo  /\  A  = +oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
103 eqtr3 2249 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = -oo )  ->  A  =  B )
104103ancoms 268 . . . . . 6  |-  ( ( B  = -oo  /\  A  = -oo )  ->  A  =  B )
105 mnfxr 8203 . . . . . . . . 9  |- -oo  e.  RR*
106 xrltnr 9975 . . . . . . . . 9  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
107105, 106ax-mp 5 . . . . . . . 8  |-  -. -oo  < -oo
108 breq12 4088 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  <-> -oo 
< -oo ) )
109108ancoms 268 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( A  <  B  <-> -oo 
< -oo ) )
110107, 109mtbiri 679 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = -oo )  ->  -.  A  <  B
)
111 breq12 4088 . . . . . . . 8  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( B  <  A  <-> -oo 
< -oo ) )
112107, 111mtbiri 679 . . . . . . 7  |-  ( ( B  = -oo  /\  A  = -oo )  ->  -.  B  <  A
)
113110, 112jca 306 . . . . . 6  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( -.  A  < 
B  /\  -.  B  <  A ) )
114104, 1132thd 175 . . . . 5  |-  ( ( B  = -oo  /\  A  = -oo )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
11592, 102, 1143jaodan 1340 . . . 4  |-  ( ( B  = -oo  /\  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
116115ancoms 268 . . 3  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  B  = -oo )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
11740, 79, 1163jaodan 1340 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  -> 
( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
1181, 2, 117syl2anb 291 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4083   RRcr 7998   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180    < clt 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186
This theorem is referenced by:  xrletri3  10000  iccid  10121  xrmaxleim  11755  xrmaxif  11762  xrmaxaddlem  11771  infxrnegsupex  11774  bdxmet  15175
  Copyright terms: Public domain W3C validator