ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssioo Unicode version

Theorem blssioo 12714
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
blssioo  |-  ran  ( ball `  D )  C_  ran  (,)

Proof of Theorem blssioo
Dummy variables  r  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . 5  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 12710 . . . 4  |-  D  e.  ( *Met `  RR )
3 blrn 12581 . . . 4  |-  ( D  e.  ( *Met `  RR )  ->  (
z  e.  ran  ( ball `  D )  <->  E. y  e.  RR  E. r  e. 
RR*  z  =  ( y ( ball `  D
) r ) ) )
42, 3ax-mp 5 . . 3  |-  ( z  e.  ran  ( ball `  D )  <->  E. y  e.  RR  E. r  e. 
RR*  z  =  ( y ( ball `  D
) r ) )
5 elxr 9563 . . . . . 6  |-  ( r  e.  RR*  <->  ( r  e.  RR  \/  r  = +oo  \/  r  = -oo ) )
61bl2ioo 12711 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y ( ball `  D ) r )  =  ( ( y  -  r ) (,) ( y  +  r ) ) )
7 resubcl 8026 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y  -  r
)  e.  RR )
8 readdcl 7746 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y  +  r )  e.  RR )
9 rexr 7811 . . . . . . . . . 10  |-  ( ( y  -  r )  e.  RR  ->  (
y  -  r )  e.  RR* )
10 rexr 7811 . . . . . . . . . 10  |-  ( ( y  +  r )  e.  RR  ->  (
y  +  r )  e.  RR* )
11 ioorebasg 9758 . . . . . . . . . 10  |-  ( ( ( y  -  r
)  e.  RR*  /\  (
y  +  r )  e.  RR* )  ->  (
( y  -  r
) (,) ( y  +  r ) )  e.  ran  (,) )
129, 10, 11syl2an 287 . . . . . . . . 9  |-  ( ( ( y  -  r
)  e.  RR  /\  ( y  +  r )  e.  RR )  ->  ( ( y  -  r ) (,) ( y  +  r ) )  e.  ran  (,) )
137, 8, 12syl2anc 408 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( ( y  -  r ) (,) (
y  +  r ) )  e.  ran  (,) )
146, 13eqeltrd 2216 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
15 oveq2 5782 . . . . . . . . 9  |-  ( r  = +oo  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) +oo )
)
161remet 12709 . . . . . . . . . 10  |-  D  e.  ( Met `  RR )
17 blpnf 12569 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  RR )  /\  y  e.  RR )  ->  (
y ( ball `  D
) +oo )  =  RR )
1816, 17mpan 420 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ( ball `  D
) +oo )  =  RR )
1915, 18sylan9eqr 2194 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  = +oo )  ->  ( y ( ball `  D ) r )  =  RR )
20 ioomax 9731 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
21 mnfxr 7822 . . . . . . . . . 10  |- -oo  e.  RR*
22 pnfxr 7818 . . . . . . . . . 10  |- +oo  e.  RR*
23 ioorebasg 9758 . . . . . . . . . 10  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e. 
ran  (,) )
2421, 22, 23mp2an 422 . . . . . . . . 9  |-  ( -oo (,) +oo )  e.  ran  (,)
2520, 24eqeltrri 2213 . . . . . . . 8  |-  RR  e.  ran  (,)
2619, 25eqeltrdi 2230 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  = +oo )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
27 oveq2 5782 . . . . . . . . 9  |-  ( r  = -oo  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) -oo )
)
28 0xr 7812 . . . . . . . . . . . 12  |-  0  e.  RR*
29 nltmnf 9574 . . . . . . . . . . . 12  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
3028, 29ax-mp 5 . . . . . . . . . . 11  |-  -.  0  < -oo
31 xblm 12586 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  y  e.  RR  /\ -oo  e.  RR* )  ->  ( E. w  w  e.  ( y ( ball `  D ) -oo )  <->  0  < -oo ) )
322, 21, 31mp3an13 1306 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  ( E. w  w  e.  ( y ( ball `  D ) -oo )  <->  0  < -oo ) )
3330, 32mtbiri 664 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -.  E. w  w  e.  ( y ( ball `  D
) -oo ) )
34 notm0 3383 . . . . . . . . . 10  |-  ( -. 
E. w  w  e.  ( y ( ball `  D ) -oo )  <->  ( y ( ball `  D
) -oo )  =  (/) )
3533, 34sylib 121 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ( ball `  D
) -oo )  =  (/) )
3627, 35sylan9eqr 2194 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  = -oo )  ->  ( y ( ball `  D ) r )  =  (/) )
37 iooidg 9692 . . . . . . . . . 10  |-  ( 0  e.  RR*  ->  ( 0 (,) 0 )  =  (/) )
3828, 37ax-mp 5 . . . . . . . . 9  |-  ( 0 (,) 0 )  =  (/)
39 ioorebasg 9758 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  (
0 (,) 0 )  e.  ran  (,) )
4028, 28, 39mp2an 422 . . . . . . . . 9  |-  ( 0 (,) 0 )  e. 
ran  (,)
4138, 40eqeltrri 2213 . . . . . . . 8  |-  (/)  e.  ran  (,)
4236, 41eqeltrdi 2230 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  = -oo )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
4314, 26, 423jaodan 1284 . . . . . 6  |-  ( ( y  e.  RR  /\  ( r  e.  RR  \/  r  = +oo  \/  r  = -oo ) )  ->  (
y ( ball `  D
) r )  e. 
ran  (,) )
445, 43sylan2b 285 . . . . 5  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( y ( ball `  D ) r )  e.  ran  (,) )
45 eleq1 2202 . . . . 5  |-  ( z  =  ( y (
ball `  D )
r )  ->  (
z  e.  ran  (,)  <->  (
y ( ball `  D
) r )  e. 
ran  (,) ) )
4644, 45syl5ibrcom 156 . . . 4  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( z  =  ( y ( ball `  D
) r )  -> 
z  e.  ran  (,) ) )
4746rexlimivv 2555 . . 3  |-  ( E. y  e.  RR  E. r  e.  RR*  z  =  ( y ( ball `  D ) r )  ->  z  e.  ran  (,) )
484, 47sylbi 120 . 2  |-  ( z  e.  ran  ( ball `  D )  ->  z  e.  ran  (,) )
4948ssriv 3101 1  |-  ran  ( ball `  D )  C_  ran  (,)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ w3o 961    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417    C_ wss 3071   (/)c0 3363   class class class wbr 3929    X. cxp 4537   ran crn 4540    |` cres 4541    o. ccom 4543   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620    + caddc 7623   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799    < clt 7800    - cmin 7933   (,)cioo 9671   abscabs 10769   *Metcxmet 12149   Metcmet 12150   ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-xadd 9560  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159
This theorem is referenced by:  tgioo  12715
  Copyright terms: Public domain W3C validator