ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssioo Unicode version

Theorem blssioo 13339
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
blssioo  |-  ran  ( ball `  D )  C_  ran  (,)

Proof of Theorem blssioo
Dummy variables  r  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . 5  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 13335 . . . 4  |-  D  e.  ( *Met `  RR )
3 blrn 13206 . . . 4  |-  ( D  e.  ( *Met `  RR )  ->  (
z  e.  ran  ( ball `  D )  <->  E. y  e.  RR  E. r  e. 
RR*  z  =  ( y ( ball `  D
) r ) ) )
42, 3ax-mp 5 . . 3  |-  ( z  e.  ran  ( ball `  D )  <->  E. y  e.  RR  E. r  e. 
RR*  z  =  ( y ( ball `  D
) r ) )
5 elxr 9733 . . . . . 6  |-  ( r  e.  RR*  <->  ( r  e.  RR  \/  r  = +oo  \/  r  = -oo ) )
61bl2ioo 13336 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y ( ball `  D ) r )  =  ( ( y  -  r ) (,) ( y  +  r ) ) )
7 resubcl 8183 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y  -  r
)  e.  RR )
8 readdcl 7900 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y  +  r )  e.  RR )
9 rexr 7965 . . . . . . . . . 10  |-  ( ( y  -  r )  e.  RR  ->  (
y  -  r )  e.  RR* )
10 rexr 7965 . . . . . . . . . 10  |-  ( ( y  +  r )  e.  RR  ->  (
y  +  r )  e.  RR* )
11 ioorebasg 9932 . . . . . . . . . 10  |-  ( ( ( y  -  r
)  e.  RR*  /\  (
y  +  r )  e.  RR* )  ->  (
( y  -  r
) (,) ( y  +  r ) )  e.  ran  (,) )
129, 10, 11syl2an 287 . . . . . . . . 9  |-  ( ( ( y  -  r
)  e.  RR  /\  ( y  +  r )  e.  RR )  ->  ( ( y  -  r ) (,) ( y  +  r ) )  e.  ran  (,) )
137, 8, 12syl2anc 409 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( ( y  -  r ) (,) (
y  +  r ) )  e.  ran  (,) )
146, 13eqeltrd 2247 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
15 oveq2 5861 . . . . . . . . 9  |-  ( r  = +oo  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) +oo )
)
161remet 13334 . . . . . . . . . 10  |-  D  e.  ( Met `  RR )
17 blpnf 13194 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  RR )  /\  y  e.  RR )  ->  (
y ( ball `  D
) +oo )  =  RR )
1816, 17mpan 422 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ( ball `  D
) +oo )  =  RR )
1915, 18sylan9eqr 2225 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  = +oo )  ->  ( y ( ball `  D ) r )  =  RR )
20 ioomax 9905 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
21 mnfxr 7976 . . . . . . . . . 10  |- -oo  e.  RR*
22 pnfxr 7972 . . . . . . . . . 10  |- +oo  e.  RR*
23 ioorebasg 9932 . . . . . . . . . 10  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e. 
ran  (,) )
2421, 22, 23mp2an 424 . . . . . . . . 9  |-  ( -oo (,) +oo )  e.  ran  (,)
2520, 24eqeltrri 2244 . . . . . . . 8  |-  RR  e.  ran  (,)
2619, 25eqeltrdi 2261 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  = +oo )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
27 oveq2 5861 . . . . . . . . 9  |-  ( r  = -oo  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) -oo )
)
28 0xr 7966 . . . . . . . . . . . 12  |-  0  e.  RR*
29 nltmnf 9745 . . . . . . . . . . . 12  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
3028, 29ax-mp 5 . . . . . . . . . . 11  |-  -.  0  < -oo
31 xblm 13211 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  y  e.  RR  /\ -oo  e.  RR* )  ->  ( E. w  w  e.  ( y ( ball `  D ) -oo )  <->  0  < -oo ) )
322, 21, 31mp3an13 1323 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  ( E. w  w  e.  ( y ( ball `  D ) -oo )  <->  0  < -oo ) )
3330, 32mtbiri 670 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -.  E. w  w  e.  ( y ( ball `  D
) -oo ) )
34 notm0 3435 . . . . . . . . . 10  |-  ( -. 
E. w  w  e.  ( y ( ball `  D ) -oo )  <->  ( y ( ball `  D
) -oo )  =  (/) )
3533, 34sylib 121 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ( ball `  D
) -oo )  =  (/) )
3627, 35sylan9eqr 2225 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  = -oo )  ->  ( y ( ball `  D ) r )  =  (/) )
37 iooidg 9866 . . . . . . . . . 10  |-  ( 0  e.  RR*  ->  ( 0 (,) 0 )  =  (/) )
3828, 37ax-mp 5 . . . . . . . . 9  |-  ( 0 (,) 0 )  =  (/)
39 ioorebasg 9932 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  (
0 (,) 0 )  e.  ran  (,) )
4028, 28, 39mp2an 424 . . . . . . . . 9  |-  ( 0 (,) 0 )  e. 
ran  (,)
4138, 40eqeltrri 2244 . . . . . . . 8  |-  (/)  e.  ran  (,)
4236, 41eqeltrdi 2261 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  = -oo )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
4314, 26, 423jaodan 1301 . . . . . 6  |-  ( ( y  e.  RR  /\  ( r  e.  RR  \/  r  = +oo  \/  r  = -oo ) )  ->  (
y ( ball `  D
) r )  e. 
ran  (,) )
445, 43sylan2b 285 . . . . 5  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( y ( ball `  D ) r )  e.  ran  (,) )
45 eleq1 2233 . . . . 5  |-  ( z  =  ( y (
ball `  D )
r )  ->  (
z  e.  ran  (,)  <->  (
y ( ball `  D
) r )  e. 
ran  (,) ) )
4644, 45syl5ibrcom 156 . . . 4  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( z  =  ( y ( ball `  D
) r )  -> 
z  e.  ran  (,) ) )
4746rexlimivv 2593 . . 3  |-  ( E. y  e.  RR  E. r  e.  RR*  z  =  ( y ( ball `  D ) r )  ->  z  e.  ran  (,) )
484, 47sylbi 120 . 2  |-  ( z  e.  ran  ( ball `  D )  ->  z  e.  ran  (,) )
4948ssriv 3151 1  |-  ran  ( ball `  D )  C_  ran  (,)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ w3o 972    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449    C_ wss 3121   (/)c0 3414   class class class wbr 3989    X. cxp 4609   ran crn 4612    |` cres 4613    o. ccom 4615   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774    + caddc 7777   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954    - cmin 8090   (,)cioo 9845   abscabs 10961   *Metcxmet 12774   Metcmet 12775   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-xadd 9730  df-ioo 9849  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784
This theorem is referenced by:  tgioo  13340
  Copyright terms: Public domain W3C validator