ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssioo Unicode version

Theorem blssioo 14732
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
blssioo  |-  ran  ( ball `  D )  C_  ran  (,)

Proof of Theorem blssioo
Dummy variables  r  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . 5  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 14728 . . . 4  |-  D  e.  ( *Met `  RR )
3 blrn 14591 . . . 4  |-  ( D  e.  ( *Met `  RR )  ->  (
z  e.  ran  ( ball `  D )  <->  E. y  e.  RR  E. r  e. 
RR*  z  =  ( y ( ball `  D
) r ) ) )
42, 3ax-mp 5 . . 3  |-  ( z  e.  ran  ( ball `  D )  <->  E. y  e.  RR  E. r  e. 
RR*  z  =  ( y ( ball `  D
) r ) )
5 elxr 9845 . . . . . 6  |-  ( r  e.  RR*  <->  ( r  e.  RR  \/  r  = +oo  \/  r  = -oo ) )
61bl2ioo 14729 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y ( ball `  D ) r )  =  ( ( y  -  r ) (,) ( y  +  r ) ) )
7 resubcl 8285 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y  -  r
)  e.  RR )
8 readdcl 8000 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y  +  r )  e.  RR )
9 rexr 8067 . . . . . . . . . 10  |-  ( ( y  -  r )  e.  RR  ->  (
y  -  r )  e.  RR* )
10 rexr 8067 . . . . . . . . . 10  |-  ( ( y  +  r )  e.  RR  ->  (
y  +  r )  e.  RR* )
11 ioorebasg 10044 . . . . . . . . . 10  |-  ( ( ( y  -  r
)  e.  RR*  /\  (
y  +  r )  e.  RR* )  ->  (
( y  -  r
) (,) ( y  +  r ) )  e.  ran  (,) )
129, 10, 11syl2an 289 . . . . . . . . 9  |-  ( ( ( y  -  r
)  e.  RR  /\  ( y  +  r )  e.  RR )  ->  ( ( y  -  r ) (,) ( y  +  r ) )  e.  ran  (,) )
137, 8, 12syl2anc 411 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( ( y  -  r ) (,) (
y  +  r ) )  e.  ran  (,) )
146, 13eqeltrd 2270 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  e.  RR )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
15 oveq2 5927 . . . . . . . . 9  |-  ( r  = +oo  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) +oo )
)
161remet 14727 . . . . . . . . . 10  |-  D  e.  ( Met `  RR )
17 blpnf 14579 . . . . . . . . . 10  |-  ( ( D  e.  ( Met `  RR )  /\  y  e.  RR )  ->  (
y ( ball `  D
) +oo )  =  RR )
1816, 17mpan 424 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ( ball `  D
) +oo )  =  RR )
1915, 18sylan9eqr 2248 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  = +oo )  ->  ( y ( ball `  D ) r )  =  RR )
20 ioomax 10017 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
21 mnfxr 8078 . . . . . . . . . 10  |- -oo  e.  RR*
22 pnfxr 8074 . . . . . . . . . 10  |- +oo  e.  RR*
23 ioorebasg 10044 . . . . . . . . . 10  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo (,) +oo )  e. 
ran  (,) )
2421, 22, 23mp2an 426 . . . . . . . . 9  |-  ( -oo (,) +oo )  e.  ran  (,)
2520, 24eqeltrri 2267 . . . . . . . 8  |-  RR  e.  ran  (,)
2619, 25eqeltrdi 2284 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  = +oo )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
27 oveq2 5927 . . . . . . . . 9  |-  ( r  = -oo  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) -oo )
)
28 0xr 8068 . . . . . . . . . . . 12  |-  0  e.  RR*
29 nltmnf 9857 . . . . . . . . . . . 12  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
3028, 29ax-mp 5 . . . . . . . . . . 11  |-  -.  0  < -oo
31 xblm 14596 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  y  e.  RR  /\ -oo  e.  RR* )  ->  ( E. w  w  e.  ( y ( ball `  D ) -oo )  <->  0  < -oo ) )
322, 21, 31mp3an13 1339 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  ( E. w  w  e.  ( y ( ball `  D ) -oo )  <->  0  < -oo ) )
3330, 32mtbiri 676 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -.  E. w  w  e.  ( y ( ball `  D
) -oo ) )
34 notm0 3468 . . . . . . . . . 10  |-  ( -. 
E. w  w  e.  ( y ( ball `  D ) -oo )  <->  ( y ( ball `  D
) -oo )  =  (/) )
3533, 34sylib 122 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ( ball `  D
) -oo )  =  (/) )
3627, 35sylan9eqr 2248 . . . . . . . 8  |-  ( ( y  e.  RR  /\  r  = -oo )  ->  ( y ( ball `  D ) r )  =  (/) )
37 iooidg 9978 . . . . . . . . . 10  |-  ( 0  e.  RR*  ->  ( 0 (,) 0 )  =  (/) )
3828, 37ax-mp 5 . . . . . . . . 9  |-  ( 0 (,) 0 )  =  (/)
39 ioorebasg 10044 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  0  e.  RR* )  ->  (
0 (,) 0 )  e.  ran  (,) )
4028, 28, 39mp2an 426 . . . . . . . . 9  |-  ( 0 (,) 0 )  e. 
ran  (,)
4138, 40eqeltrri 2267 . . . . . . . 8  |-  (/)  e.  ran  (,)
4236, 41eqeltrdi 2284 . . . . . . 7  |-  ( ( y  e.  RR  /\  r  = -oo )  ->  ( y ( ball `  D ) r )  e.  ran  (,) )
4314, 26, 423jaodan 1317 . . . . . 6  |-  ( ( y  e.  RR  /\  ( r  e.  RR  \/  r  = +oo  \/  r  = -oo ) )  ->  (
y ( ball `  D
) r )  e. 
ran  (,) )
445, 43sylan2b 287 . . . . 5  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( y ( ball `  D ) r )  e.  ran  (,) )
45 eleq1 2256 . . . . 5  |-  ( z  =  ( y (
ball `  D )
r )  ->  (
z  e.  ran  (,)  <->  (
y ( ball `  D
) r )  e. 
ran  (,) ) )
4644, 45syl5ibrcom 157 . . . 4  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( z  =  ( y ( ball `  D
) r )  -> 
z  e.  ran  (,) ) )
4746rexlimivv 2617 . . 3  |-  ( E. y  e.  RR  E. r  e.  RR*  z  =  ( y ( ball `  D ) r )  ->  z  e.  ran  (,) )
484, 47sylbi 121 . 2  |-  ( z  e.  ran  ( ball `  D )  ->  z  e.  ran  (,) )
4948ssriv 3184 1  |-  ran  ( ball `  D )  C_  ran  (,)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473    C_ wss 3154   (/)c0 3447   class class class wbr 4030    X. cxp 4658   ran crn 4661    |` cres 4662    o. ccom 4664   ` cfv 5255  (class class class)co 5919   RRcr 7873   0cc0 7874    + caddc 7877   +oocpnf 8053   -oocmnf 8054   RR*cxr 8055    < clt 8056    - cmin 8192   (,)cioo 9957   abscabs 11144   *Metcxmet 14035   Metcmet 14036   ballcbl 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-xadd 9842  df-ioo 9961  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045
This theorem is referenced by:  tgioo  14733
  Copyright terms: Public domain W3C validator