ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemph Unicode version

Theorem acexmidlemph 5775
Description: Lemma for acexmid 5781. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemph  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    x, C    ph, x

Proof of Theorem acexmidlemph
StepHypRef Expression
1 olc 701 . . . 4  |-  ( ph  ->  ( x  =  (/)  \/ 
ph ) )
21ralrimivw 2509 . . 3  |-  ( ph  ->  A. x  e.  { (/)
,  { (/) } } 
( x  =  (/)  \/ 
ph ) )
3 acexmidlem.a . . . . 5  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
43eqeq2i 2151 . . . 4  |-  ( {
(/) ,  { (/) } }  =  A  <->  { (/) ,  { (/) } }  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
5 rabid2 2610 . . . 4  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  <->  A. x  e.  { (/) ,  { (/) } }  (
x  =  (/)  \/  ph ) )
64, 5bitri 183 . . 3  |-  ( {
(/) ,  { (/) } }  =  A  <->  A. x  e.  { (/)
,  { (/) } } 
( x  =  (/)  \/ 
ph ) )
72, 6sylibr 133 . 2  |-  ( ph  ->  { (/) ,  { (/) } }  =  A )
8 olc 701 . . . 4  |-  ( ph  ->  ( x  =  { (/)
}  \/  ph )
)
98ralrimivw 2509 . . 3  |-  ( ph  ->  A. x  e.  { (/)
,  { (/) } } 
( x  =  { (/)
}  \/  ph )
)
10 acexmidlem.b . . . . 5  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
1110eqeq2i 2151 . . . 4  |-  ( {
(/) ,  { (/) } }  =  B  <->  { (/) ,  { (/) } }  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) } )
12 rabid2 2610 . . . 4  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  <->  A. x  e.  { (/)
,  { (/) } } 
( x  =  { (/)
}  \/  ph )
)
1311, 12bitri 183 . . 3  |-  ( {
(/) ,  { (/) } }  =  B  <->  A. x  e.  { (/)
,  { (/) } } 
( x  =  { (/)
}  \/  ph )
)
149, 13sylibr 133 . 2  |-  ( ph  ->  { (/) ,  { (/) } }  =  B )
157, 14eqtr3d 2175 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1332   A.wral 2417   {crab 2421   (/)c0 3368   {csn 3532   {cpr 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-ral 2422  df-rab 2426
This theorem is referenced by:  acexmidlemab  5776
  Copyright terms: Public domain W3C validator