Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemph Unicode version

Theorem acexmidlemph 5659
 Description: Lemma for acexmid 5665. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a
acexmidlem.b
acexmidlem.c
Assertion
Ref Expression
acexmidlemph
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem acexmidlemph
StepHypRef Expression
1 olc 668 . . . 4
21ralrimivw 2448 . . 3
3 acexmidlem.a . . . . 5
43eqeq2i 2099 . . . 4
5 rabid2 2544 . . . 4
64, 5bitri 183 . . 3
72, 6sylibr 133 . 2
8 olc 668 . . . 4
98ralrimivw 2448 . . 3
10 acexmidlem.b . . . . 5
1110eqeq2i 2099 . . . 4
12 rabid2 2544 . . . 4
1311, 12bitri 183 . . 3
149, 13sylibr 133 . 2
157, 14eqtr3d 2123 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 665   wceq 1290  wral 2360  crab 2364  c0 3287  csn 3450  cpr 3451 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-ral 2365  df-rab 2369 This theorem is referenced by:  acexmidlemab  5660
 Copyright terms: Public domain W3C validator