| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemph | Unicode version | ||
| Description: Lemma for acexmid 5933. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a |
|
| acexmidlem.b |
|
| acexmidlem.c |
|
| Ref | Expression |
|---|---|
| acexmidlemph |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 712 |
. . . 4
| |
| 2 | 1 | ralrimivw 2579 |
. . 3
|
| 3 | acexmidlem.a |
. . . . 5
| |
| 4 | 3 | eqeq2i 2215 |
. . . 4
|
| 5 | rabid2 2682 |
. . . 4
| |
| 6 | 4, 5 | bitri 184 |
. . 3
|
| 7 | 2, 6 | sylibr 134 |
. 2
|
| 8 | olc 712 |
. . . 4
| |
| 9 | 8 | ralrimivw 2579 |
. . 3
|
| 10 | acexmidlem.b |
. . . . 5
| |
| 11 | 10 | eqeq2i 2215 |
. . . 4
|
| 12 | rabid2 2682 |
. . . 4
| |
| 13 | 11, 12 | bitri 184 |
. . 3
|
| 14 | 9, 13 | sylibr 134 |
. 2
|
| 15 | 7, 14 | eqtr3d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-rab 2492 |
| This theorem is referenced by: acexmidlemab 5928 |
| Copyright terms: Public domain | W3C validator |