Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlemph | GIF version |
Description: Lemma for acexmid 5841. (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
acexmidlemph | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 701 | . . . 4 ⊢ (𝜑 → (𝑥 = ∅ ∨ 𝜑)) | |
2 | 1 | ralrimivw 2540 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑)) |
3 | acexmidlem.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
4 | 3 | eqeq2i 2176 | . . . 4 ⊢ ({∅, {∅}} = 𝐴 ↔ {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
5 | rabid2 2642 | . . . 4 ⊢ ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑)) | |
6 | 4, 5 | bitri 183 | . . 3 ⊢ ({∅, {∅}} = 𝐴 ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑)) |
7 | 2, 6 | sylibr 133 | . 2 ⊢ (𝜑 → {∅, {∅}} = 𝐴) |
8 | olc 701 | . . . 4 ⊢ (𝜑 → (𝑥 = {∅} ∨ 𝜑)) | |
9 | 8 | ralrimivw 2540 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑)) |
10 | acexmidlem.b | . . . . 5 ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} | |
11 | 10 | eqeq2i 2176 | . . . 4 ⊢ ({∅, {∅}} = 𝐵 ↔ {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}) |
12 | rabid2 2642 | . . . 4 ⊢ ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑)) | |
13 | 11, 12 | bitri 183 | . . 3 ⊢ ({∅, {∅}} = 𝐵 ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑)) |
14 | 9, 13 | sylibr 133 | . 2 ⊢ (𝜑 → {∅, {∅}} = 𝐵) |
15 | 7, 14 | eqtr3d 2200 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∀wral 2444 {crab 2448 ∅c0 3409 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-rab 2453 |
This theorem is referenced by: acexmidlemab 5836 |
Copyright terms: Public domain | W3C validator |