| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemph | GIF version | ||
| Description: Lemma for acexmid 5921. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
| acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
| acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
| Ref | Expression |
|---|---|
| acexmidlemph | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 712 | . . . 4 ⊢ (𝜑 → (𝑥 = ∅ ∨ 𝜑)) | |
| 2 | 1 | ralrimivw 2571 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑)) |
| 3 | acexmidlem.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
| 4 | 3 | eqeq2i 2207 | . . . 4 ⊢ ({∅, {∅}} = 𝐴 ↔ {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
| 5 | rabid2 2674 | . . . 4 ⊢ ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑)) | |
| 6 | 4, 5 | bitri 184 | . . 3 ⊢ ({∅, {∅}} = 𝐴 ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑)) |
| 7 | 2, 6 | sylibr 134 | . 2 ⊢ (𝜑 → {∅, {∅}} = 𝐴) |
| 8 | olc 712 | . . . 4 ⊢ (𝜑 → (𝑥 = {∅} ∨ 𝜑)) | |
| 9 | 8 | ralrimivw 2571 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑)) |
| 10 | acexmidlem.b | . . . . 5 ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} | |
| 11 | 10 | eqeq2i 2207 | . . . 4 ⊢ ({∅, {∅}} = 𝐵 ↔ {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}) |
| 12 | rabid2 2674 | . . . 4 ⊢ ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑)) | |
| 13 | 11, 12 | bitri 184 | . . 3 ⊢ ({∅, {∅}} = 𝐵 ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑)) |
| 14 | 9, 13 | sylibr 134 | . 2 ⊢ (𝜑 → {∅, {∅}} = 𝐵) |
| 15 | 7, 14 | eqtr3d 2231 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∀wral 2475 {crab 2479 ∅c0 3450 {csn 3622 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: acexmidlemab 5916 |
| Copyright terms: Public domain | W3C validator |