ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemb Unicode version

Theorem acexmidlemb 5880
Description: Lemma for acexmid 5887. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemb  |-  ( (/)  e.  B  ->  ph )
Distinct variable groups:    x, A    x, B    x, C    ph, x

Proof of Theorem acexmidlemb
StepHypRef Expression
1 acexmidlem.b . . . 4  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
21eleq2i 2254 . . 3  |-  ( (/)  e.  B  <->  (/)  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) } )
3 0ex 4142 . . . . 5  |-  (/)  e.  _V
43prid1 3710 . . . 4  |-  (/)  e.  { (/)
,  { (/) } }
5 eqeq1 2194 . . . . . 6  |-  ( x  =  (/)  ->  ( x  =  { (/) }  <->  (/)  =  { (/)
} ) )
65orbi1d 792 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  =  { (/) }  \/  ph )  <->  ( (/)  =  { (/)
}  \/  ph )
) )
76elrab3 2906 . . . 4  |-  ( (/)  e.  { (/) ,  { (/) } }  ->  ( (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) } 
<->  ( (/)  =  { (/)
}  \/  ph )
) )
84, 7ax-mp 5 . . 3  |-  ( (/)  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  <->  ( (/)  =  { (/)
}  \/  ph )
)
92, 8bitri 184 . 2  |-  ( (/)  e.  B  <->  ( (/)  =  { (/)
}  \/  ph )
)
10 noel 3438 . . . 4  |-  -.  (/)  e.  (/)
113snid 3635 . . . . 5  |-  (/)  e.  { (/)
}
12 eleq2 2251 . . . . 5  |-  ( (/)  =  { (/) }  ->  ( (/) 
e.  (/)  <->  (/)  e.  { (/) } ) )
1311, 12mpbiri 168 . . . 4  |-  ( (/)  =  { (/) }  ->  (/)  e.  (/) )
1410, 13mto 663 . . 3  |-  -.  (/)  =  { (/)
}
15 orel1 726 . . 3  |-  ( -.  (/)  =  { (/) }  ->  ( ( (/)  =  { (/)
}  \/  ph )  ->  ph ) )
1614, 15ax-mp 5 . 2  |-  ( (
(/)  =  { (/) }  \/  ph )  ->  ph )
179, 16sylbi 121 1  |-  ( (/)  e.  B  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1363    e. wcel 2158   {crab 2469   (/)c0 3434   {csn 3604   {cpr 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-nul 4141
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-nul 3435  df-sn 3610  df-pr 3611
This theorem is referenced by:  acexmidlem1  5884
  Copyright terms: Public domain W3C validator