ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemb Unicode version

Theorem acexmidlemb 5834
Description: Lemma for acexmid 5841. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemb  |-  ( (/)  e.  B  ->  ph )
Distinct variable groups:    x, A    x, B    x, C    ph, x

Proof of Theorem acexmidlemb
StepHypRef Expression
1 acexmidlem.b . . . 4  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
21eleq2i 2233 . . 3  |-  ( (/)  e.  B  <->  (/)  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) } )
3 0ex 4109 . . . . 5  |-  (/)  e.  _V
43prid1 3682 . . . 4  |-  (/)  e.  { (/)
,  { (/) } }
5 eqeq1 2172 . . . . . 6  |-  ( x  =  (/)  ->  ( x  =  { (/) }  <->  (/)  =  { (/)
} ) )
65orbi1d 781 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  =  { (/) }  \/  ph )  <->  ( (/)  =  { (/)
}  \/  ph )
) )
76elrab3 2883 . . . 4  |-  ( (/)  e.  { (/) ,  { (/) } }  ->  ( (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) } 
<->  ( (/)  =  { (/)
}  \/  ph )
) )
84, 7ax-mp 5 . . 3  |-  ( (/)  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  <->  ( (/)  =  { (/)
}  \/  ph )
)
92, 8bitri 183 . 2  |-  ( (/)  e.  B  <->  ( (/)  =  { (/)
}  \/  ph )
)
10 noel 3413 . . . 4  |-  -.  (/)  e.  (/)
113snid 3607 . . . . 5  |-  (/)  e.  { (/)
}
12 eleq2 2230 . . . . 5  |-  ( (/)  =  { (/) }  ->  ( (/) 
e.  (/)  <->  (/)  e.  { (/) } ) )
1311, 12mpbiri 167 . . . 4  |-  ( (/)  =  { (/) }  ->  (/)  e.  (/) )
1410, 13mto 652 . . 3  |-  -.  (/)  =  { (/)
}
15 orel1 715 . . 3  |-  ( -.  (/)  =  { (/) }  ->  ( ( (/)  =  { (/)
}  \/  ph )  ->  ph ) )
1614, 15ax-mp 5 . 2  |-  ( (
(/)  =  { (/) }  \/  ph )  ->  ph )
179, 16sylbi 120 1  |-  ( (/)  e.  B  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   {crab 2448   (/)c0 3409   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-pr 3583
This theorem is referenced by:  acexmidlem1  5838
  Copyright terms: Public domain W3C validator