Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlemb | Unicode version |
Description: Lemma for acexmid 5841. (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | |
acexmidlem.b | |
acexmidlem.c |
Ref | Expression |
---|---|
acexmidlemb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.b | . . . 4 | |
2 | 1 | eleq2i 2233 | . . 3 |
3 | 0ex 4109 | . . . . 5 | |
4 | 3 | prid1 3682 | . . . 4 |
5 | eqeq1 2172 | . . . . . 6 | |
6 | 5 | orbi1d 781 | . . . . 5 |
7 | 6 | elrab3 2883 | . . . 4 |
8 | 4, 7 | ax-mp 5 | . . 3 |
9 | 2, 8 | bitri 183 | . 2 |
10 | noel 3413 | . . . 4 | |
11 | 3 | snid 3607 | . . . . 5 |
12 | eleq2 2230 | . . . . 5 | |
13 | 11, 12 | mpbiri 167 | . . . 4 |
14 | 10, 13 | mto 652 | . . 3 |
15 | orel1 715 | . . 3 | |
16 | 14, 15 | ax-mp 5 | . 2 |
17 | 9, 16 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 698 wceq 1343 wcel 2136 crab 2448 c0 3409 csn 3576 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 |
This theorem is referenced by: acexmidlem1 5838 |
Copyright terms: Public domain | W3C validator |