ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemb Unicode version

Theorem acexmidlemb 5845
Description: Lemma for acexmid 5852. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlemb  |-  ( (/)  e.  B  ->  ph )
Distinct variable groups:    x, A    x, B    x, C    ph, x

Proof of Theorem acexmidlemb
StepHypRef Expression
1 acexmidlem.b . . . 4  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
21eleq2i 2237 . . 3  |-  ( (/)  e.  B  <->  (/)  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) } )
3 0ex 4116 . . . . 5  |-  (/)  e.  _V
43prid1 3689 . . . 4  |-  (/)  e.  { (/)
,  { (/) } }
5 eqeq1 2177 . . . . . 6  |-  ( x  =  (/)  ->  ( x  =  { (/) }  <->  (/)  =  { (/)
} ) )
65orbi1d 786 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  =  { (/) }  \/  ph )  <->  ( (/)  =  { (/)
}  \/  ph )
) )
76elrab3 2887 . . . 4  |-  ( (/)  e.  { (/) ,  { (/) } }  ->  ( (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  { (/)
}  \/  ph ) } 
<->  ( (/)  =  { (/)
}  \/  ph )
) )
84, 7ax-mp 5 . . 3  |-  ( (/)  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }  <->  ( (/)  =  { (/)
}  \/  ph )
)
92, 8bitri 183 . 2  |-  ( (/)  e.  B  <->  ( (/)  =  { (/)
}  \/  ph )
)
10 noel 3418 . . . 4  |-  -.  (/)  e.  (/)
113snid 3614 . . . . 5  |-  (/)  e.  { (/)
}
12 eleq2 2234 . . . . 5  |-  ( (/)  =  { (/) }  ->  ( (/) 
e.  (/)  <->  (/)  e.  { (/) } ) )
1311, 12mpbiri 167 . . . 4  |-  ( (/)  =  { (/) }  ->  (/)  e.  (/) )
1410, 13mto 657 . . 3  |-  -.  (/)  =  { (/)
}
15 orel1 720 . . 3  |-  ( -.  (/)  =  { (/) }  ->  ( ( (/)  =  { (/)
}  \/  ph )  ->  ph ) )
1614, 15ax-mp 5 . 2  |-  ( (
(/)  =  { (/) }  \/  ph )  ->  ph )
179, 16sylbi 120 1  |-  ( (/)  e.  B  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   {crab 2452   (/)c0 3414   {csn 3583   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-pr 3590
This theorem is referenced by:  acexmidlem1  5849
  Copyright terms: Public domain W3C validator