![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeq2 2203 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqtri 2214 rabid2 2671 dfss2 3169 equncom 3305 preq12b 3797 preqsn 3802 opeqpr 4283 orddif 4580 dfrel4v 5118 dfiota2 5217 funopg 5289 fnressn 5745 fressnfv 5746 acexmidlemph 5912 fnovim 6028 tpossym 6331 qsid 6656 mapsncnv 6751 ixpsnf1o 6792 pw1fin 6968 ss1o0el1o 6971 unfiexmid 6976 onntri35 7299 recidpirq 7920 axprecex 7942 negeq0 8275 muleqadd 8689 fihasheq0 10867 cjne0 11055 sqrt00 11187 sqrtmsq2i 11282 cbvsum 11506 fsump1i 11579 mertenslem2 11682 cbvprod 11704 absefib 11917 efieq1re 11918 isnsg4 13285 plyco 14937 lgsdinn0 15205 m1lgs 15242 iswomninnlem 15609 |
Copyright terms: Public domain | W3C validator |