| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 |
|
| Ref | Expression |
|---|---|
| eqeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 |
. 2
| |
| 2 | eqeq2 2215 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqtri 2226 rabid2 2683 ssalel 3181 equncom 3318 preq12b 3811 preqsn 3816 opeqpr 4299 orddif 4596 dfrel4v 5135 dfiota2 5234 funopg 5306 funopsn 5764 fnressn 5772 fressnfv 5773 acexmidlemph 5939 fnovim 6056 tpossym 6364 qsid 6689 mapsncnv 6784 ixpsnf1o 6825 pw1fin 7009 ss1o0el1o 7012 unfiexmid 7017 onntri35 7351 recidpirq 7973 axprecex 7995 negeq0 8328 muleqadd 8743 fihasheq0 10940 cjne0 11252 sqrt00 11384 sqrtmsq2i 11479 cbvsum 11704 fsump1i 11777 mertenslem2 11880 cbvprod 11902 absefib 12115 efieq1re 12116 isnsg4 13581 plyco 15264 lgsdinn0 15558 m1lgs 15595 iswomninnlem 16025 |
| Copyright terms: Public domain | W3C validator |