| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 |
|
| Ref | Expression |
|---|---|
| eqeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 |
. 2
| |
| 2 | eqeq2 2217 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqtri 2228 rabid2 2685 ssalel 3189 equncom 3326 preq12b 3824 preqsn 3829 opeqpr 4316 orddif 4613 dfrel4v 5153 dfiota2 5252 funopg 5324 funopsn 5785 fnressn 5793 fressnfv 5794 acexmidlemph 5960 fnovim 6077 tpossym 6385 qsid 6710 mapsncnv 6805 ixpsnf1o 6846 pw1fin 7033 ss1o0el1o 7036 unfiexmid 7041 onntri35 7383 recidpirq 8006 axprecex 8028 negeq0 8361 muleqadd 8776 fihasheq0 10975 cjne0 11334 sqrt00 11466 sqrtmsq2i 11561 cbvsum 11786 fsump1i 11859 mertenslem2 11962 cbvprod 11984 absefib 12197 efieq1re 12198 isnsg4 13663 plyco 15346 lgsdinn0 15640 m1lgs 15677 upgrex 15814 iswomninnlem 16190 |
| Copyright terms: Public domain | W3C validator |