| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 |
|
| Ref | Expression |
|---|---|
| eqeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 |
. 2
| |
| 2 | eqeq2 2215 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqtri 2226 rabid2 2683 ssalel 3181 equncom 3318 preq12b 3811 preqsn 3816 opeqpr 4298 orddif 4595 dfrel4v 5134 dfiota2 5233 funopg 5305 funopsn 5762 fnressn 5770 fressnfv 5771 acexmidlemph 5937 fnovim 6054 tpossym 6362 qsid 6687 mapsncnv 6782 ixpsnf1o 6823 pw1fin 7007 ss1o0el1o 7010 unfiexmid 7015 onntri35 7349 recidpirq 7971 axprecex 7993 negeq0 8326 muleqadd 8741 fihasheq0 10938 cjne0 11219 sqrt00 11351 sqrtmsq2i 11446 cbvsum 11671 fsump1i 11744 mertenslem2 11847 cbvprod 11869 absefib 12082 efieq1re 12083 isnsg4 13548 plyco 15231 lgsdinn0 15525 m1lgs 15562 iswomninnlem 15992 |
| Copyright terms: Public domain | W3C validator |