Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 |
Ref | Expression |
---|---|
eqeq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 | . 2 | |
2 | eqeq2 2185 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: eqtri 2196 rabid2 2651 dfss2 3142 equncom 3278 preq12b 3766 preqsn 3771 opeqpr 4247 orddif 4540 dfrel4v 5072 dfiota2 5171 funopg 5242 fnressn 5694 fressnfv 5695 acexmidlemph 5858 fnovim 5973 tpossym 6267 qsid 6590 mapsncnv 6685 ixpsnf1o 6726 pw1fin 6900 ss1o0el1o 6902 unfiexmid 6907 onntri35 7226 recidpirq 7832 axprecex 7854 negeq0 8185 muleqadd 8598 fihasheq0 10739 cjne0 10883 sqrt00 11015 sqrtmsq2i 11110 cbvsum 11334 fsump1i 11407 mertenslem2 11510 cbvprod 11532 absefib 11744 efieq1re 11745 lgsdinn0 14018 iswomninnlem 14356 |
Copyright terms: Public domain | W3C validator |