![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeq2 2124 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-4 1470 ax-17 1489 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 |
This theorem is referenced by: eqtri 2135 rabid2 2581 dfss2 3052 equncom 3187 preq12b 3663 preqsn 3668 opeqpr 4135 orddif 4422 dfrel4v 4948 dfiota2 5047 funopg 5115 fnressn 5560 fressnfv 5561 acexmidlemph 5721 fnovim 5833 tpossym 6127 qsid 6448 mapsncnv 6543 ixpsnf1o 6584 unfiexmid 6759 recidpirq 7593 axprecex 7615 negeq0 7939 muleqadd 8342 fihasheq0 10433 cjne0 10573 sqrt00 10704 sqrtmsq2i 10799 cbvsum 11021 fsump1i 11094 mertenslem2 11197 absefib 11327 efieq1re 11328 |
Copyright terms: Public domain | W3C validator |