| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq2i.1 |
|
| Ref | Expression |
|---|---|
| eqeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2i.1 |
. 2
| |
| 2 | eqeq2 2239 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqtri 2250 rabid2 2708 ssalel 3212 equncom 3349 preq12b 3848 preqsn 3853 opeqpr 4340 orddif 4639 dfrel4v 5180 dfiota2 5279 funopg 5352 funopsn 5817 fnressn 5825 fressnfv 5826 riotaeqimp 5979 acexmidlemph 5994 fnovim 6113 tpossym 6422 qsid 6747 mapsncnv 6842 ixpsnf1o 6883 pw1fin 7072 ss1o0el1o 7075 unfiexmid 7080 onntri35 7422 recidpirq 8045 axprecex 8067 negeq0 8400 muleqadd 8815 fihasheq0 11015 cjne0 11419 sqrt00 11551 sqrtmsq2i 11646 cbvsum 11871 fsump1i 11944 mertenslem2 12047 cbvprod 12069 absefib 12282 efieq1re 12283 isnsg4 13749 plyco 15433 lgsdinn0 15727 m1lgs 15764 upgrex 15903 uhgr2edg 16004 usgredg2vlem1 16020 usgredg2vlem2 16021 ushgredgedg 16024 ushgredgedgloop 16026 iswomninnlem 16417 |
| Copyright terms: Public domain | W3C validator |