ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftl Unicode version

Theorem iccshftl 10118
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftl.1  |-  ( A  -  R )  =  C
iccshftl.2  |-  ( B  -  R )  =  D
Assertion
Ref Expression
iccshftl  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  -  R
)  e.  ( C [,] D ) ) )

Proof of Theorem iccshftl
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  X  e.  RR )
2 resubcl 8336 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  -  R
)  e.  RR )
31, 22thd 175 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  RR  <->  ( X  -  R )  e.  RR ) )
43adantl 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  RR  <->  ( X  -  R )  e.  RR ) )
5 lesub1 8529 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR )  ->  ( A  <_  X  <->  ( A  -  R )  <_  ( X  -  R )
) )
653expb 1207 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( A  <_  X  <->  ( A  -  R )  <_  ( X  -  R )
) )
76adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  ( A  -  R )  <_  ( X  -  R ) ) )
8 iccshftl.1 . . . . 5  |-  ( A  -  R )  =  C
98breq1i 4051 . . . 4  |-  ( ( A  -  R )  <_  ( X  -  R )  <->  C  <_  ( X  -  R ) )
107, 9bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  C  <_  ( X  -  R ) ) )
11 lesub1 8529 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR )  ->  ( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R )
) )
12113expb 1207 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R )
) )
1312an12s 565 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R )
) )
1413adantll 476 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R ) ) )
15 iccshftl.2 . . . . 5  |-  ( B  -  R )  =  D
1615breq2i 4052 . . . 4  |-  ( ( X  -  R )  <_  ( B  -  R )  <->  ( X  -  R )  <_  D
)
1714, 16bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  -  R )  <_  D ) )
184, 10, 173anbi123d 1325 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
)  <->  ( ( X  -  R )  e.  RR  /\  C  <_ 
( X  -  R
)  /\  ( X  -  R )  <_  D
) ) )
19 elicc2 10060 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2019adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
21 resubcl 8336 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  -  R
)  e.  RR )
228, 21eqeltrrid 2293 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
23 resubcl 8336 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  -  R
)  e.  RR )
2415, 23eqeltrrid 2293 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
25 elicc2 10060 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  -  R )  e.  ( C [,] D )  <-> 
( ( X  -  R )  e.  RR  /\  C  <_  ( X  -  R )  /\  ( X  -  R )  <_  D ) ) )
2622, 24, 25syl2an 289 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  -  R )  e.  ( C [,] D )  <-> 
( ( X  -  R )  e.  RR  /\  C  <_  ( X  -  R )  /\  ( X  -  R )  <_  D ) ) )
2726anandirs 593 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  -  R )  e.  ( C [,] D
)  <->  ( ( X  -  R )  e.  RR  /\  C  <_ 
( X  -  R
)  /\  ( X  -  R )  <_  D
) ) )
2827adantrl 478 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  -  R )  e.  ( C [,] D )  <-> 
( ( X  -  R )  e.  RR  /\  C  <_  ( X  -  R )  /\  ( X  -  R )  <_  D ) ) )
2918, 20, 283bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  -  R
)  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924    <_ cle 8108    - cmin 8243   [,]cicc 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-icc 10017
This theorem is referenced by:  iccshftli  10119  iccf1o  10126
  Copyright terms: Public domain W3C validator