ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftl Unicode version

Theorem iccshftl 9772
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftl.1  |-  ( A  -  R )  =  C
iccshftl.2  |-  ( B  -  R )  =  D
Assertion
Ref Expression
iccshftl  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  -  R
)  e.  ( C [,] D ) ) )

Proof of Theorem iccshftl
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  X  e.  RR )
2 resubcl 8019 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  -  R
)  e.  RR )
31, 22thd 174 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  RR  <->  ( X  -  R )  e.  RR ) )
43adantl 275 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  RR  <->  ( X  -  R )  e.  RR ) )
5 lesub1 8211 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR )  ->  ( A  <_  X  <->  ( A  -  R )  <_  ( X  -  R )
) )
653expb 1182 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( A  <_  X  <->  ( A  -  R )  <_  ( X  -  R )
) )
76adantlr 468 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  ( A  -  R )  <_  ( X  -  R ) ) )
8 iccshftl.1 . . . . 5  |-  ( A  -  R )  =  C
98breq1i 3931 . . . 4  |-  ( ( A  -  R )  <_  ( X  -  R )  <->  C  <_  ( X  -  R ) )
107, 9syl6bb 195 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  C  <_  ( X  -  R ) ) )
11 lesub1 8211 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR )  ->  ( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R )
) )
12113expb 1182 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R )
) )
1312an12s 554 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R )
) )
1413adantll 467 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  -  R )  <_  ( B  -  R ) ) )
15 iccshftl.2 . . . . 5  |-  ( B  -  R )  =  D
1615breq2i 3932 . . . 4  |-  ( ( X  -  R )  <_  ( B  -  R )  <->  ( X  -  R )  <_  D
)
1714, 16syl6bb 195 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  -  R )  <_  D ) )
184, 10, 173anbi123d 1290 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
)  <->  ( ( X  -  R )  e.  RR  /\  C  <_ 
( X  -  R
)  /\  ( X  -  R )  <_  D
) ) )
19 elicc2 9714 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2019adantr 274 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
21 resubcl 8019 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  -  R
)  e.  RR )
228, 21eqeltrrid 2225 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
23 resubcl 8019 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  -  R
)  e.  RR )
2415, 23eqeltrrid 2225 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
25 elicc2 9714 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  -  R )  e.  ( C [,] D )  <-> 
( ( X  -  R )  e.  RR  /\  C  <_  ( X  -  R )  /\  ( X  -  R )  <_  D ) ) )
2622, 24, 25syl2an 287 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  -  R )  e.  ( C [,] D )  <-> 
( ( X  -  R )  e.  RR  /\  C  <_  ( X  -  R )  /\  ( X  -  R )  <_  D ) ) )
2726anandirs 582 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  -  R )  e.  ( C [,] D
)  <->  ( ( X  -  R )  e.  RR  /\  C  <_ 
( X  -  R
)  /\  ( X  -  R )  <_  D
) ) )
2827adantrl 469 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  -  R )  e.  ( C [,] D )  <-> 
( ( X  -  R )  e.  RR  /\  C  <_  ( X  -  R )  /\  ( X  -  R )  <_  D ) ) )
2918, 20, 283bitr4d 219 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  -  R
)  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612    <_ cle 7794    - cmin 7926   [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-icc 9671
This theorem is referenced by:  iccshftli  9773  iccf1o  9780
  Copyright terms: Public domain W3C validator