| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccshftl | Unicode version | ||
| Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iccshftl.1 |
|
| iccshftl.2 |
|
| Ref | Expression |
|---|---|
| iccshftl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | resubcl 8336 |
. . . . 5
| |
| 3 | 1, 2 | 2thd 175 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | lesub1 8529 |
. . . . . 6
| |
| 6 | 5 | 3expb 1207 |
. . . . 5
|
| 7 | 6 | adantlr 477 |
. . . 4
|
| 8 | iccshftl.1 |
. . . . 5
| |
| 9 | 8 | breq1i 4051 |
. . . 4
|
| 10 | 7, 9 | bitrdi 196 |
. . 3
|
| 11 | lesub1 8529 |
. . . . . . 7
| |
| 12 | 11 | 3expb 1207 |
. . . . . 6
|
| 13 | 12 | an12s 565 |
. . . . 5
|
| 14 | 13 | adantll 476 |
. . . 4
|
| 15 | iccshftl.2 |
. . . . 5
| |
| 16 | 15 | breq2i 4052 |
. . . 4
|
| 17 | 14, 16 | bitrdi 196 |
. . 3
|
| 18 | 4, 10, 17 | 3anbi123d 1325 |
. 2
|
| 19 | elicc2 10060 |
. . 3
| |
| 20 | 19 | adantr 276 |
. 2
|
| 21 | resubcl 8336 |
. . . . . 6
| |
| 22 | 8, 21 | eqeltrrid 2293 |
. . . . 5
|
| 23 | resubcl 8336 |
. . . . . 6
| |
| 24 | 15, 23 | eqeltrrid 2293 |
. . . . 5
|
| 25 | elicc2 10060 |
. . . . 5
| |
| 26 | 22, 24, 25 | syl2an 289 |
. . . 4
|
| 27 | 26 | anandirs 593 |
. . 3
|
| 28 | 27 | adantrl 478 |
. 2
|
| 29 | 18, 20, 28 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-icc 10017 |
| This theorem is referenced by: iccshftli 10119 iccf1o 10126 |
| Copyright terms: Public domain | W3C validator |