ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftr Unicode version

Theorem iccshftr 9807
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1  |-  ( A  +  R )  =  C
iccshftr.2  |-  ( B  +  R )  =  D
Assertion
Ref Expression
iccshftr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  X  e.  RR )
2 readdcl 7770 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  +  R
)  e.  RR )
31, 22thd 174 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
43adantl 275 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
5 leadd1 8216 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
653expb 1183 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
76adantlr 469 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R ) ) )
8 iccshftr.1 . . . . 5  |-  ( A  +  R )  =  C
98breq1i 3944 . . . 4  |-  ( ( A  +  R )  <_  ( X  +  R )  <->  C  <_  ( X  +  R ) )
107, 9syl6bb 195 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  C  <_  ( X  +  R ) ) )
11 leadd1 8216 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
12113expb 1183 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1312an12s 555 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1413adantll 468 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R ) ) )
15 iccshftr.2 . . . . 5  |-  ( B  +  R )  =  D
1615breq2i 3945 . . . 4  |-  ( ( X  +  R )  <_  ( B  +  R )  <->  ( X  +  R )  <_  D
)
1714, 16syl6bb 195 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  D ) )
184, 10, 173anbi123d 1291 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
19 elicc2 9751 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2019adantr 274 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
21 readdcl 7770 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  +  R
)  e.  RR )
228, 21eqeltrrid 2228 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
23 readdcl 7770 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  +  R
)  e.  RR )
2415, 23eqeltrrid 2228 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
25 elicc2 9751 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2622, 24, 25syl2an 287 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2726anandirs 583 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
2827adantrl 470 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2918, 20, 283bitr4d 219 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643    + caddc 7647    <_ cle 7825   [,]cicc 9704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-icc 9708
This theorem is referenced by:  iccshftri  9808  lincmb01cmp  9816
  Copyright terms: Public domain W3C validator