Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iccshftr | Unicode version |
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iccshftr.1 | |
iccshftr.2 |
Ref | Expression |
---|---|
iccshftr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | readdcl 7900 | . . . . 5 | |
3 | 1, 2 | 2thd 174 | . . . 4 |
4 | 3 | adantl 275 | . . 3 |
5 | leadd1 8349 | . . . . . 6 | |
6 | 5 | 3expb 1199 | . . . . 5 |
7 | 6 | adantlr 474 | . . . 4 |
8 | iccshftr.1 | . . . . 5 | |
9 | 8 | breq1i 3996 | . . . 4 |
10 | 7, 9 | bitrdi 195 | . . 3 |
11 | leadd1 8349 | . . . . . . 7 | |
12 | 11 | 3expb 1199 | . . . . . 6 |
13 | 12 | an12s 560 | . . . . 5 |
14 | 13 | adantll 473 | . . . 4 |
15 | iccshftr.2 | . . . . 5 | |
16 | 15 | breq2i 3997 | . . . 4 |
17 | 14, 16 | bitrdi 195 | . . 3 |
18 | 4, 10, 17 | 3anbi123d 1307 | . 2 |
19 | elicc2 9895 | . . 3 | |
20 | 19 | adantr 274 | . 2 |
21 | readdcl 7900 | . . . . . 6 | |
22 | 8, 21 | eqeltrrid 2258 | . . . . 5 |
23 | readdcl 7900 | . . . . . 6 | |
24 | 15, 23 | eqeltrrid 2258 | . . . . 5 |
25 | elicc2 9895 | . . . . 5 | |
26 | 22, 24, 25 | syl2an 287 | . . . 4 |
27 | 26 | anandirs 588 | . . 3 |
28 | 27 | adantrl 475 | . 2 |
29 | 18, 20, 28 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 caddc 7777 cle 7955 cicc 9848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-icc 9852 |
This theorem is referenced by: iccshftri 9952 lincmb01cmp 9960 |
Copyright terms: Public domain | W3C validator |