| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccshftr | Unicode version | ||
| Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iccshftr.1 |
|
| iccshftr.2 |
|
| Ref | Expression |
|---|---|
| iccshftr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | readdcl 8086 |
. . . . 5
| |
| 3 | 1, 2 | 2thd 175 |
. . . 4
|
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | leadd1 8538 |
. . . . . 6
| |
| 6 | 5 | 3expb 1207 |
. . . . 5
|
| 7 | 6 | adantlr 477 |
. . . 4
|
| 8 | iccshftr.1 |
. . . . 5
| |
| 9 | 8 | breq1i 4066 |
. . . 4
|
| 10 | 7, 9 | bitrdi 196 |
. . 3
|
| 11 | leadd1 8538 |
. . . . . . 7
| |
| 12 | 11 | 3expb 1207 |
. . . . . 6
|
| 13 | 12 | an12s 565 |
. . . . 5
|
| 14 | 13 | adantll 476 |
. . . 4
|
| 15 | iccshftr.2 |
. . . . 5
| |
| 16 | 15 | breq2i 4067 |
. . . 4
|
| 17 | 14, 16 | bitrdi 196 |
. . 3
|
| 18 | 4, 10, 17 | 3anbi123d 1325 |
. 2
|
| 19 | elicc2 10095 |
. . 3
| |
| 20 | 19 | adantr 276 |
. 2
|
| 21 | readdcl 8086 |
. . . . . 6
| |
| 22 | 8, 21 | eqeltrrid 2295 |
. . . . 5
|
| 23 | readdcl 8086 |
. . . . . 6
| |
| 24 | 15, 23 | eqeltrrid 2295 |
. . . . 5
|
| 25 | elicc2 10095 |
. . . . 5
| |
| 26 | 22, 24, 25 | syl2an 289 |
. . . 4
|
| 27 | 26 | anandirs 593 |
. . 3
|
| 28 | 27 | adantrl 478 |
. 2
|
| 29 | 18, 20, 28 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-icc 10052 |
| This theorem is referenced by: iccshftri 10152 lincmb01cmp 10160 |
| Copyright terms: Public domain | W3C validator |