ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftr Unicode version

Theorem iccshftr 9930
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1  |-  ( A  +  R )  =  C
iccshftr.2  |-  ( B  +  R )  =  D
Assertion
Ref Expression
iccshftr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  X  e.  RR )
2 readdcl 7879 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  +  R
)  e.  RR )
31, 22thd 174 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
43adantl 275 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
5 leadd1 8328 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
653expb 1194 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
76adantlr 469 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R ) ) )
8 iccshftr.1 . . . . 5  |-  ( A  +  R )  =  C
98breq1i 3989 . . . 4  |-  ( ( A  +  R )  <_  ( X  +  R )  <->  C  <_  ( X  +  R ) )
107, 9bitrdi 195 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  C  <_  ( X  +  R ) ) )
11 leadd1 8328 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
12113expb 1194 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1312an12s 555 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1413adantll 468 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R ) ) )
15 iccshftr.2 . . . . 5  |-  ( B  +  R )  =  D
1615breq2i 3990 . . . 4  |-  ( ( X  +  R )  <_  ( B  +  R )  <->  ( X  +  R )  <_  D
)
1714, 16bitrdi 195 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  D ) )
184, 10, 173anbi123d 1302 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
19 elicc2 9874 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2019adantr 274 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
21 readdcl 7879 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  +  R
)  e.  RR )
228, 21eqeltrrid 2254 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
23 readdcl 7879 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  +  R
)  e.  RR )
2415, 23eqeltrrid 2254 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
25 elicc2 9874 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2622, 24, 25syl2an 287 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2726anandirs 583 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
2827adantrl 470 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2918, 20, 283bitr4d 219 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752    + caddc 7756    <_ cle 7934   [,]cicc 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-icc 9831
This theorem is referenced by:  iccshftri  9931  lincmb01cmp  9939
  Copyright terms: Public domain W3C validator