ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsubel Unicode version

Theorem fzsubel 9840
Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzsubel  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  -  K
)  e.  ( ( M  -  K ) ... ( N  -  K ) ) ) )

Proof of Theorem fzsubel
StepHypRef Expression
1 znegcl 9085 . . 3  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
2 fzaddel 9839 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  -u K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) ) )
31, 2sylanr2 402 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) ) )
4 zcn 9059 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  CC )
5 zcn 9059 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
64, 5anim12i 336 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  CC  /\  N  e.  CC ) )
7 zcn 9059 . . . 4  |-  ( J  e.  ZZ  ->  J  e.  CC )
8 zcn 9059 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  CC )
97, 8anim12i 336 . . 3  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  e.  CC  /\  K  e.  CC ) )
10 negsub 8010 . . . . 5  |-  ( ( J  e.  CC  /\  K  e.  CC )  ->  ( J  +  -u K )  =  ( J  -  K ) )
1110adantl 275 . . . 4  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  ( J  e.  CC  /\  K  e.  CC ) )  -> 
( J  +  -u K )  =  ( J  -  K ) )
12 negsub 8010 . . . . . . 7  |-  ( ( M  e.  CC  /\  K  e.  CC )  ->  ( M  +  -u K )  =  ( M  -  K ) )
13 negsub 8010 . . . . . . 7  |-  ( ( N  e.  CC  /\  K  e.  CC )  ->  ( N  +  -u K )  =  ( N  -  K ) )
1412, 13oveqan12d 5793 . . . . . 6  |-  ( ( ( M  e.  CC  /\  K  e.  CC )  /\  ( N  e.  CC  /\  K  e.  CC ) )  -> 
( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K ) ) )
1514anandirs 582 . . . . 5  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  K  e.  CC )  ->  ( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K )
) )
1615adantrl 469 . . . 4  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  ( J  e.  CC  /\  K  e.  CC ) )  -> 
( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K ) ) )
1711, 16eleq12d 2210 . . 3  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  ( J  e.  CC  /\  K  e.  CC ) )  -> 
( ( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) )  <->  ( J  -  K )  e.  ( ( M  -  K
) ... ( N  -  K ) ) ) )
186, 9, 17syl2an 287 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) )  <->  ( J  -  K )  e.  ( ( M  -  K
) ... ( N  -  K ) ) ) )
193, 18bitrd 187 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  -  K
)  e.  ( ( M  -  K ) ... ( N  -  K ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7618    + caddc 7623    - cmin 7933   -ucneg 7934   ZZcz 9054   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-fz 9791
This theorem is referenced by:  elfzp1b  9877  elfzm1b  9878  fisum0diag2  11216
  Copyright terms: Public domain W3C validator