ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsubel Unicode version

Theorem fzsubel 10256
Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzsubel  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  -  K
)  e.  ( ( M  -  K ) ... ( N  -  K ) ) ) )

Proof of Theorem fzsubel
StepHypRef Expression
1 znegcl 9477 . . 3  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
2 fzaddel 10255 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  -u K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) ) )
31, 2sylanr2 405 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) ) )
4 zcn 9451 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  CC )
5 zcn 9451 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
64, 5anim12i 338 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  CC  /\  N  e.  CC ) )
7 zcn 9451 . . . 4  |-  ( J  e.  ZZ  ->  J  e.  CC )
8 zcn 9451 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  CC )
97, 8anim12i 338 . . 3  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  e.  CC  /\  K  e.  CC ) )
10 negsub 8394 . . . . 5  |-  ( ( J  e.  CC  /\  K  e.  CC )  ->  ( J  +  -u K )  =  ( J  -  K ) )
1110adantl 277 . . . 4  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  ( J  e.  CC  /\  K  e.  CC ) )  -> 
( J  +  -u K )  =  ( J  -  K ) )
12 negsub 8394 . . . . . . 7  |-  ( ( M  e.  CC  /\  K  e.  CC )  ->  ( M  +  -u K )  =  ( M  -  K ) )
13 negsub 8394 . . . . . . 7  |-  ( ( N  e.  CC  /\  K  e.  CC )  ->  ( N  +  -u K )  =  ( N  -  K ) )
1412, 13oveqan12d 6020 . . . . . 6  |-  ( ( ( M  e.  CC  /\  K  e.  CC )  /\  ( N  e.  CC  /\  K  e.  CC ) )  -> 
( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K ) ) )
1514anandirs 595 . . . . 5  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  K  e.  CC )  ->  ( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K )
) )
1615adantrl 478 . . . 4  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  ( J  e.  CC  /\  K  e.  CC ) )  -> 
( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K ) ) )
1711, 16eleq12d 2300 . . 3  |-  ( ( ( M  e.  CC  /\  N  e.  CC )  /\  ( J  e.  CC  /\  K  e.  CC ) )  -> 
( ( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) )  <->  ( J  -  K )  e.  ( ( M  -  K
) ... ( N  -  K ) ) ) )
186, 9, 17syl2an 289 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  +  -u K )  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) )  <->  ( J  -  K )  e.  ( ( M  -  K
) ... ( N  -  K ) ) ) )
193, 18bitrd 188 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  -  K
)  e.  ( ( M  -  K ) ... ( N  -  K ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    - cmin 8317   -ucneg 8318   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-fz 10205
This theorem is referenced by:  elfzp1b  10293  elfzm1b  10294  fisum0diag2  11958
  Copyright terms: Public domain W3C validator