| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 |
|
| syl2an2.2 |
|
| syl2an2.3 |
|
| Ref | Expression |
|---|---|
| syl2an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 |
. . 3
| |
| 2 | syl2an2.2 |
. . 3
| |
| 3 | syl2an2.3 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | 4 | anabss7 583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6882 xposdif 10074 qbtwnz 10466 seq3f1o 10734 exp3vallem 10757 fihashf1rn 11005 fun2dmnop0 11064 xrmin2inf 11774 sumrbdclem 11883 summodclem3 11886 zsumdc 11890 fsum3cvg2 11900 mertenslem2 12042 mertensabs 12043 prodrbdclem 12077 prodmodclem2a 12082 zproddc 12085 eftcl 12160 divalgmod 12433 bitsmod 12462 gcdsupex 12473 gcdsupcl 12474 cncongr2 12621 isprm3 12635 eulerthlemrprm 12746 eulerthlema 12747 pcmptdvds 12863 prdsex 13297 elplyd 15409 ply1term 15411 lgsval2lem 15683 nninfself 16338 |
| Copyright terms: Public domain | W3C validator |