![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version |
Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2an2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl2an2.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2an2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2an2.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2an2.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | anabss7 583 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mapsnf1o 6791 xposdif 9948 qbtwnz 10320 seq3f1o 10588 exp3vallem 10611 fihashf1rn 10859 xrmin2inf 11411 sumrbdclem 11520 summodclem3 11523 zsumdc 11527 fsum3cvg2 11537 mertenslem2 11679 mertensabs 11680 prodrbdclem 11714 prodmodclem2a 11719 zproddc 11722 eftcl 11797 divalgmod 12068 gcdsupex 12094 gcdsupcl 12095 cncongr2 12242 isprm3 12256 eulerthlemrprm 12367 eulerthlema 12368 pcmptdvds 12483 prdsex 12880 elplyd 14887 ply1term 14889 lgsval2lem 15126 nninfself 15503 |
Copyright terms: Public domain | W3C validator |