| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 |
|
| syl2an2.2 |
|
| syl2an2.3 |
|
| Ref | Expression |
|---|---|
| syl2an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 |
. . 3
| |
| 2 | syl2an2.2 |
. . 3
| |
| 3 | syl2an2.3 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | 4 | anabss7 583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6837 xposdif 10024 qbtwnz 10416 seq3f1o 10684 exp3vallem 10707 fihashf1rn 10955 fun2dmnop0 11014 xrmin2inf 11654 sumrbdclem 11763 summodclem3 11766 zsumdc 11770 fsum3cvg2 11780 mertenslem2 11922 mertensabs 11923 prodrbdclem 11957 prodmodclem2a 11962 zproddc 11965 eftcl 12040 divalgmod 12313 bitsmod 12342 gcdsupex 12353 gcdsupcl 12354 cncongr2 12501 isprm3 12515 eulerthlemrprm 12626 eulerthlema 12627 pcmptdvds 12743 prdsex 13176 elplyd 15288 ply1term 15290 lgsval2lem 15562 nninfself 16091 |
| Copyright terms: Public domain | W3C validator |