| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 |
|
| syl2an2.2 |
|
| syl2an2.3 |
|
| Ref | Expression |
|---|---|
| syl2an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 |
. . 3
| |
| 2 | syl2an2.2 |
. . 3
| |
| 3 | syl2an2.3 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | 4 | anabss7 583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6805 xposdif 9974 qbtwnz 10358 seq3f1o 10626 exp3vallem 10649 fihashf1rn 10897 xrmin2inf 11450 sumrbdclem 11559 summodclem3 11562 zsumdc 11566 fsum3cvg2 11576 mertenslem2 11718 mertensabs 11719 prodrbdclem 11753 prodmodclem2a 11758 zproddc 11761 eftcl 11836 divalgmod 12109 bitsmod 12138 gcdsupex 12149 gcdsupcl 12150 cncongr2 12297 isprm3 12311 eulerthlemrprm 12422 eulerthlema 12423 pcmptdvds 12539 prdsex 12971 elplyd 15061 ply1term 15063 lgsval2lem 15335 nninfself 15744 |
| Copyright terms: Public domain | W3C validator |