| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 |
|
| syl2an2.2 |
|
| syl2an2.3 |
|
| Ref | Expression |
|---|---|
| syl2an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 |
. . 3
| |
| 2 | syl2an2.2 |
. . 3
| |
| 3 | syl2an2.3 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | 4 | anabss7 583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6823 xposdif 10003 qbtwnz 10392 seq3f1o 10660 exp3vallem 10683 fihashf1rn 10931 fun2dmnop0 10990 xrmin2inf 11550 sumrbdclem 11659 summodclem3 11662 zsumdc 11666 fsum3cvg2 11676 mertenslem2 11818 mertensabs 11819 prodrbdclem 11853 prodmodclem2a 11858 zproddc 11861 eftcl 11936 divalgmod 12209 bitsmod 12238 gcdsupex 12249 gcdsupcl 12250 cncongr2 12397 isprm3 12411 eulerthlemrprm 12522 eulerthlema 12523 pcmptdvds 12639 prdsex 13072 elplyd 15184 ply1term 15186 lgsval2lem 15458 nninfself 15912 |
| Copyright terms: Public domain | W3C validator |