| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 |
|
| syl2an2.2 |
|
| syl2an2.3 |
|
| Ref | Expression |
|---|---|
| syl2an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 |
. . 3
| |
| 2 | syl2an2.2 |
. . 3
| |
| 3 | syl2an2.3 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | 4 | anabss7 583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6814 xposdif 9986 qbtwnz 10375 seq3f1o 10643 exp3vallem 10666 fihashf1rn 10914 xrmin2inf 11498 sumrbdclem 11607 summodclem3 11610 zsumdc 11614 fsum3cvg2 11624 mertenslem2 11766 mertensabs 11767 prodrbdclem 11801 prodmodclem2a 11806 zproddc 11809 eftcl 11884 divalgmod 12157 bitsmod 12186 gcdsupex 12197 gcdsupcl 12198 cncongr2 12345 isprm3 12359 eulerthlemrprm 12470 eulerthlema 12471 pcmptdvds 12587 prdsex 13019 elplyd 15131 ply1term 15133 lgsval2lem 15405 nninfself 15814 |
| Copyright terms: Public domain | W3C validator |