| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2an2 | Unicode version | ||
| Description: syl2an 289 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| Ref | Expression |
|---|---|
| syl2an2.1 |
|
| syl2an2.2 |
|
| syl2an2.3 |
|
| Ref | Expression |
|---|---|
| syl2an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2.1 |
. . 3
| |
| 2 | syl2an2.2 |
. . 3
| |
| 3 | syl2an2.3 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | 4 | anabss7 583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mapsnf1o 6823 xposdif 10003 qbtwnz 10392 seq3f1o 10660 exp3vallem 10683 fihashf1rn 10931 fun2dmnop0 10990 xrmin2inf 11521 sumrbdclem 11630 summodclem3 11633 zsumdc 11637 fsum3cvg2 11647 mertenslem2 11789 mertensabs 11790 prodrbdclem 11824 prodmodclem2a 11829 zproddc 11832 eftcl 11907 divalgmod 12180 bitsmod 12209 gcdsupex 12220 gcdsupcl 12221 cncongr2 12368 isprm3 12382 eulerthlemrprm 12493 eulerthlema 12494 pcmptdvds 12610 prdsex 13043 elplyd 15155 ply1term 15157 lgsval2lem 15429 nninfself 15883 |
| Copyright terms: Public domain | W3C validator |