ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvreseq Unicode version

Theorem fvreseq 5568
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fvreseq  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, B    x, F    x, G
Allowed substitution hint:    A( x)

Proof of Theorem fvreseq
StepHypRef Expression
1 fnssres 5280 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
2 fnssres 5280 . . . 4  |-  ( ( G  Fn  A  /\  B  C_  A )  -> 
( G  |`  B )  Fn  B )
31, 2anim12i 336 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  ( G  Fn  A  /\  B  C_  A
) )  ->  (
( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B ) )
43anandirs 583 . 2  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B
) )
5 eqfnfv 5562 . . 3  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( ( F  |`  B ) `  x )  =  ( ( G  |`  B ) `
 x ) ) )
6 fvres 5489 . . . . 5  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
7 fvres 5489 . . . . 5  |-  ( x  e.  B  ->  (
( G  |`  B ) `
 x )  =  ( G `  x
) )
86, 7eqeq12d 2172 . . . 4  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  =  ( ( G  |`  B ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
98ralbiia 2471 . . 3  |-  ( A. x  e.  B  (
( F  |`  B ) `
 x )  =  ( ( G  |`  B ) `  x
)  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) )
105, 9bitrdi 195 . 2  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
114, 10syl 14 1  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435    C_ wss 3102    |` cres 4585    Fn wfn 5162   ` cfv 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-res 4595  df-iota 5132  df-fun 5169  df-fn 5170  df-fv 5175
This theorem is referenced by:  tfri3  6308
  Copyright terms: Public domain W3C validator