ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvreseq Unicode version

Theorem fvreseq 5589
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fvreseq  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, B    x, F    x, G
Allowed substitution hint:    A( x)

Proof of Theorem fvreseq
StepHypRef Expression
1 fnssres 5301 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
2 fnssres 5301 . . . 4  |-  ( ( G  Fn  A  /\  B  C_  A )  -> 
( G  |`  B )  Fn  B )
31, 2anim12i 336 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  ( G  Fn  A  /\  B  C_  A
) )  ->  (
( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B ) )
43anandirs 583 . 2  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B
) )
5 eqfnfv 5583 . . 3  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( ( F  |`  B ) `  x )  =  ( ( G  |`  B ) `
 x ) ) )
6 fvres 5510 . . . . 5  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
7 fvres 5510 . . . . 5  |-  ( x  e.  B  ->  (
( G  |`  B ) `
 x )  =  ( G `  x
) )
86, 7eqeq12d 2180 . . . 4  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  =  ( ( G  |`  B ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
98ralbiia 2480 . . 3  |-  ( A. x  e.  B  (
( F  |`  B ) `
 x )  =  ( ( G  |`  B ) `  x
)  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) )
105, 9bitrdi 195 . 2  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
114, 10syl 14 1  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116    |` cres 4606    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfri3  6335
  Copyright terms: Public domain W3C validator