| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4 | Unicode version | ||
| Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| phplem2.1 |
|
| phplem2.2 |
|
| Ref | Expression |
|---|---|
| phplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6834 |
. 2
| |
| 2 | f1of1 5520 |
. . . . . . . . . 10
| |
| 3 | 2 | adantl 277 |
. . . . . . . . 9
|
| 4 | phplem2.2 |
. . . . . . . . . 10
| |
| 5 | 4 | sucex 4546 |
. . . . . . . . 9
|
| 6 | sssucid 4461 |
. . . . . . . . . 10
| |
| 7 | phplem2.1 |
. . . . . . . . . 10
| |
| 8 | f1imaen2g 6884 |
. . . . . . . . . 10
| |
| 9 | 6, 7, 8 | mpanr12 439 |
. . . . . . . . 9
|
| 10 | 3, 5, 9 | sylancl 413 |
. . . . . . . 8
|
| 11 | 10 | ensymd 6874 |
. . . . . . 7
|
| 12 | nnord 4659 |
. . . . . . . . . 10
| |
| 13 | orddif 4594 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . 9
|
| 15 | 14 | imaeq2d 5021 |
. . . . . . . 8
|
| 16 | f1ofn 5522 |
. . . . . . . . . . 11
| |
| 17 | 7 | sucid 4463 |
. . . . . . . . . . 11
|
| 18 | fnsnfv 5637 |
. . . . . . . . . . 11
| |
| 19 | 16, 17, 18 | sylancl 413 |
. . . . . . . . . 10
|
| 20 | 19 | difeq2d 3290 |
. . . . . . . . 9
|
| 21 | imadmrn 5031 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcomi 2208 |
. . . . . . . . . . 11
|
| 23 | f1ofo 5528 |
. . . . . . . . . . . 12
| |
| 24 | forn 5500 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
|
| 26 | f1odm 5525 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imaeq2d 5021 |
. . . . . . . . . . 11
|
| 28 | 22, 25, 27 | 3eqtr3a 2261 |
. . . . . . . . . 10
|
| 29 | 28 | difeq1d 3289 |
. . . . . . . . 9
|
| 30 | dff1o3 5527 |
. . . . . . . . . . 11
| |
| 31 | 30 | simprbi 275 |
. . . . . . . . . 10
|
| 32 | imadif 5353 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | 20, 29, 33 | 3eqtr4rd 2248 |
. . . . . . . 8
|
| 35 | 15, 34 | sylan9eq 2257 |
. . . . . . 7
|
| 36 | 11, 35 | breqtrd 4069 |
. . . . . 6
|
| 37 | fnfvelrn 5711 |
. . . . . . . . . 10
| |
| 38 | 16, 17, 37 | sylancl 413 |
. . . . . . . . 9
|
| 39 | 24 | eleq2d 2274 |
. . . . . . . . . 10
|
| 40 | 23, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 38, 40 | mpbid 147 |
. . . . . . . 8
|
| 42 | vex 2774 |
. . . . . . . . . 10
| |
| 43 | 42, 7 | fvex 5595 |
. . . . . . . . 9
|
| 44 | 4, 43 | phplem3 6950 |
. . . . . . . 8
|
| 45 | 41, 44 | sylan2 286 |
. . . . . . 7
|
| 46 | 45 | ensymd 6874 |
. . . . . 6
|
| 47 | entr 6875 |
. . . . . 6
| |
| 48 | 36, 46, 47 | syl2an 289 |
. . . . 5
|
| 49 | 48 | anandirs 593 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | exlimdv 1841 |
. 2
|
| 52 | 1, 51 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-er 6619 df-en 6827 |
| This theorem is referenced by: nneneq 6953 php5 6954 |
| Copyright terms: Public domain | W3C validator |