ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4 Unicode version

Theorem phplem4 6925
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )

Proof of Theorem phplem4
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6815 . 2  |-  ( suc 
A  ~~  suc  B  <->  E. f 
f : suc  A -1-1-onto-> suc  B )
2 f1of1 5506 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -1-1-> suc 
B )
32adantl 277 . . . . . . . . 9  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
4 phplem2.2 . . . . . . . . . 10  |-  B  e. 
_V
54sucex 4536 . . . . . . . . 9  |-  suc  B  e.  _V
6 sssucid 4451 . . . . . . . . . 10  |-  A  C_  suc  A
7 phplem2.1 . . . . . . . . . 10  |-  A  e. 
_V
8 f1imaen2g 6861 . . . . . . . . . 10  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  _V )  /\  ( A  C_  suc  A  /\  A  e.  _V ) )  ->  (
f " A ) 
~~  A )
96, 7, 8mpanr12 439 . . . . . . . . 9  |-  ( ( f : suc  A -1-1-> suc 
B  /\  suc  B  e. 
_V )  ->  (
f " A ) 
~~  A )
103, 5, 9sylancl 413 . . . . . . . 8  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  ~~  A
)
1110ensymd 6851 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( f " A
) )
12 nnord 4649 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
13 orddif 4584 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1412, 13syl 14 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1514imaeq2d 5010 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
16 f1ofn 5508 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f  Fn  suc  A
)
177sucid 4453 . . . . . . . . . . 11  |-  A  e. 
suc  A
18 fnsnfv 5623 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
1916, 17, 18sylancl 413 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  { ( f `  A ) }  =  ( f " { A } ) )
2019difeq2d 3282 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f " suc  A )  \  {
( f `  A
) } )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
21 imadmrn 5020 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
2221eqcomi 2200 . . . . . . . . . . 11  |-  ran  f  =  ( f " dom  f )
23 f1ofo 5514 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -onto-> suc  B )
24 forn 5486 . . . . . . . . . . . 12  |-  ( f : suc  A -onto-> suc  B  ->  ran  f  =  suc  B )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ran  f  =  suc  B )
26 f1odm 5511 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  dom  f  =  suc  A )
2726imaeq2d 5010 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " dom  f )  =  ( f " suc  A
) )
2822, 25, 273eqtr3a 2253 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  suc  B  =  ( f " suc  A
) )
2928difeq1d 3281 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( suc  B  \  { ( f `  A ) } )  =  ( ( f
" suc  A )  \  { ( f `  A ) } ) )
30 dff1o3 5513 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  <->  ( f : suc  A -onto-> suc  B  /\  Fun  `' f ) )
3130simprbi 275 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  Fun  `' f )
32 imadif 5339 . . . . . . . . . 10  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3331, 32syl 14 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3420, 29, 333eqtr4rd 2240 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( suc  B  \  { ( f `  A ) } ) )
3515, 34sylan9eq 2249 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  =  ( suc  B  \  {
( f `  A
) } ) )
3611, 35breqtrd 4060 . . . . . 6  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( suc  B  \  {
( f `  A
) } ) )
37 fnfvelrn 5697 . . . . . . . . . 10  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  ( f `  A )  e.  ran  f )
3816, 17, 37sylancl 413 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  ran  f
)
3924eleq2d 2266 . . . . . . . . . 10  |-  ( f : suc  A -onto-> suc  B  ->  ( ( f `
 A )  e. 
ran  f  <->  ( f `  A )  e.  suc  B ) )
4023, 39syl 14 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f `  A )  e.  ran  f 
<->  ( f `  A
)  e.  suc  B
) )
4138, 40mpbid 147 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  suc  B
)
42 vex 2766 . . . . . . . . . 10  |-  f  e. 
_V
4342, 7fvex 5581 . . . . . . . . 9  |-  ( f `
 A )  e. 
_V
444, 43phplem3 6924 . . . . . . . 8  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4541, 44sylan2 286 . . . . . . 7  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4645ensymd 6851 . . . . . 6  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
47 entr 6852 . . . . . 6  |-  ( ( A  ~~  ( suc 
B  \  { (
f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } )  ~~  B
)  ->  A  ~~  B )
4836, 46, 47syl2an 289 . . . . 5  |-  ( ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B )  /\  ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B ) )  ->  A  ~~  B
)
4948anandirs 593 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  B )
5049ex 115 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( f : suc  A -1-1-onto-> suc 
B  ->  A  ~~  B ) )
5150exlimdv 1833 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. f  f : suc  A -1-1-onto-> suc  B  ->  A  ~~  B ) )
521, 51biimtrid 152 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    \ cdif 3154    C_ wss 3157   {csn 3623   class class class wbr 4034   Ord word 4398   suc csuc 4401   omcom 4627   `'ccnv 4663   dom cdm 4664   ran crn 4665   "cima 4667   Fun wfun 5253    Fn wfn 5254   -1-1->wf1 5256   -onto->wfo 5257   -1-1-onto->wf1o 5258   ` cfv 5259    ~~ cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-er 6601  df-en 6809
This theorem is referenced by:  nneneq  6927  php5  6928
  Copyright terms: Public domain W3C validator