Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phplem4 | Unicode version |
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
phplem2.1 | |
phplem2.2 |
Ref | Expression |
---|---|
phplem4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6722 | . 2 | |
2 | f1of1 5439 | . . . . . . . . . 10 | |
3 | 2 | adantl 275 | . . . . . . . . 9 |
4 | phplem2.2 | . . . . . . . . . 10 | |
5 | 4 | sucex 4481 | . . . . . . . . 9 |
6 | sssucid 4398 | . . . . . . . . . 10 | |
7 | phplem2.1 | . . . . . . . . . 10 | |
8 | f1imaen2g 6768 | . . . . . . . . . 10 | |
9 | 6, 7, 8 | mpanr12 437 | . . . . . . . . 9 |
10 | 3, 5, 9 | sylancl 411 | . . . . . . . 8 |
11 | 10 | ensymd 6758 | . . . . . . 7 |
12 | nnord 4594 | . . . . . . . . . 10 | |
13 | orddif 4529 | . . . . . . . . . 10 | |
14 | 12, 13 | syl 14 | . . . . . . . . 9 |
15 | 14 | imaeq2d 4951 | . . . . . . . 8 |
16 | f1ofn 5441 | . . . . . . . . . . 11 | |
17 | 7 | sucid 4400 | . . . . . . . . . . 11 |
18 | fnsnfv 5553 | . . . . . . . . . . 11 | |
19 | 16, 17, 18 | sylancl 411 | . . . . . . . . . 10 |
20 | 19 | difeq2d 3245 | . . . . . . . . 9 |
21 | imadmrn 4961 | . . . . . . . . . . . 12 | |
22 | 21 | eqcomi 2174 | . . . . . . . . . . 11 |
23 | f1ofo 5447 | . . . . . . . . . . . 12 | |
24 | forn 5421 | . . . . . . . . . . . 12 | |
25 | 23, 24 | syl 14 | . . . . . . . . . . 11 |
26 | f1odm 5444 | . . . . . . . . . . . 12 | |
27 | 26 | imaeq2d 4951 | . . . . . . . . . . 11 |
28 | 22, 25, 27 | 3eqtr3a 2227 | . . . . . . . . . 10 |
29 | 28 | difeq1d 3244 | . . . . . . . . 9 |
30 | dff1o3 5446 | . . . . . . . . . . 11 | |
31 | 30 | simprbi 273 | . . . . . . . . . 10 |
32 | imadif 5276 | . . . . . . . . . 10 | |
33 | 31, 32 | syl 14 | . . . . . . . . 9 |
34 | 20, 29, 33 | 3eqtr4rd 2214 | . . . . . . . 8 |
35 | 15, 34 | sylan9eq 2223 | . . . . . . 7 |
36 | 11, 35 | breqtrd 4013 | . . . . . 6 |
37 | fnfvelrn 5626 | . . . . . . . . . 10 | |
38 | 16, 17, 37 | sylancl 411 | . . . . . . . . 9 |
39 | 24 | eleq2d 2240 | . . . . . . . . . 10 |
40 | 23, 39 | syl 14 | . . . . . . . . 9 |
41 | 38, 40 | mpbid 146 | . . . . . . . 8 |
42 | vex 2733 | . . . . . . . . . 10 | |
43 | 42, 7 | fvex 5514 | . . . . . . . . 9 |
44 | 4, 43 | phplem3 6829 | . . . . . . . 8 |
45 | 41, 44 | sylan2 284 | . . . . . . 7 |
46 | 45 | ensymd 6758 | . . . . . 6 |
47 | entr 6759 | . . . . . 6 | |
48 | 36, 46, 47 | syl2an 287 | . . . . 5 |
49 | 48 | anandirs 588 | . . . 4 |
50 | 49 | ex 114 | . . 3 |
51 | 50 | exlimdv 1812 | . 2 |
52 | 1, 51 | syl5bi 151 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 cdif 3118 wss 3121 csn 3581 class class class wbr 3987 word 4345 csuc 4348 com 4572 ccnv 4608 cdm 4609 crn 4610 cima 4612 wfun 5190 wfn 5191 wf1 5193 wfo 5194 wf1o 5195 cfv 5196 cen 6713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-er 6510 df-en 6716 |
This theorem is referenced by: nneneq 6832 php5 6833 |
Copyright terms: Public domain | W3C validator |