| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4 | Unicode version | ||
| Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| phplem2.1 |
|
| phplem2.2 |
|
| Ref | Expression |
|---|---|
| phplem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6893 |
. 2
| |
| 2 | f1of1 5570 |
. . . . . . . . . 10
| |
| 3 | 2 | adantl 277 |
. . . . . . . . 9
|
| 4 | phplem2.2 |
. . . . . . . . . 10
| |
| 5 | 4 | sucex 4590 |
. . . . . . . . 9
|
| 6 | sssucid 4505 |
. . . . . . . . . 10
| |
| 7 | phplem2.1 |
. . . . . . . . . 10
| |
| 8 | f1imaen2g 6943 |
. . . . . . . . . 10
| |
| 9 | 6, 7, 8 | mpanr12 439 |
. . . . . . . . 9
|
| 10 | 3, 5, 9 | sylancl 413 |
. . . . . . . 8
|
| 11 | 10 | ensymd 6933 |
. . . . . . 7
|
| 12 | nnord 4703 |
. . . . . . . . . 10
| |
| 13 | orddif 4638 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . 9
|
| 15 | 14 | imaeq2d 5067 |
. . . . . . . 8
|
| 16 | f1ofn 5572 |
. . . . . . . . . . 11
| |
| 17 | 7 | sucid 4507 |
. . . . . . . . . . 11
|
| 18 | fnsnfv 5692 |
. . . . . . . . . . 11
| |
| 19 | 16, 17, 18 | sylancl 413 |
. . . . . . . . . 10
|
| 20 | 19 | difeq2d 3322 |
. . . . . . . . 9
|
| 21 | imadmrn 5077 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcomi 2233 |
. . . . . . . . . . 11
|
| 23 | f1ofo 5578 |
. . . . . . . . . . . 12
| |
| 24 | forn 5550 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
|
| 26 | f1odm 5575 |
. . . . . . . . . . . 12
| |
| 27 | 26 | imaeq2d 5067 |
. . . . . . . . . . 11
|
| 28 | 22, 25, 27 | 3eqtr3a 2286 |
. . . . . . . . . 10
|
| 29 | 28 | difeq1d 3321 |
. . . . . . . . 9
|
| 30 | dff1o3 5577 |
. . . . . . . . . . 11
| |
| 31 | 30 | simprbi 275 |
. . . . . . . . . 10
|
| 32 | imadif 5400 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . 9
|
| 34 | 20, 29, 33 | 3eqtr4rd 2273 |
. . . . . . . 8
|
| 35 | 15, 34 | sylan9eq 2282 |
. . . . . . 7
|
| 36 | 11, 35 | breqtrd 4108 |
. . . . . 6
|
| 37 | fnfvelrn 5766 |
. . . . . . . . . 10
| |
| 38 | 16, 17, 37 | sylancl 413 |
. . . . . . . . 9
|
| 39 | 24 | eleq2d 2299 |
. . . . . . . . . 10
|
| 40 | 23, 39 | syl 14 |
. . . . . . . . 9
|
| 41 | 38, 40 | mpbid 147 |
. . . . . . . 8
|
| 42 | vex 2802 |
. . . . . . . . . 10
| |
| 43 | 42, 7 | fvex 5646 |
. . . . . . . . 9
|
| 44 | 4, 43 | phplem3 7011 |
. . . . . . . 8
|
| 45 | 41, 44 | sylan2 286 |
. . . . . . 7
|
| 46 | 45 | ensymd 6933 |
. . . . . 6
|
| 47 | entr 6934 |
. . . . . 6
| |
| 48 | 36, 46, 47 | syl2an 289 |
. . . . 5
|
| 49 | 48 | anandirs 595 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | exlimdv 1865 |
. 2
|
| 52 | 1, 51 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-er 6678 df-en 6886 |
| This theorem is referenced by: nneneq 7014 php5 7015 |
| Copyright terms: Public domain | W3C validator |