Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muladd | Unicode version |
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
muladd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl 7878 | . . 3 | |
2 | adddi 7885 | . . . 4 | |
3 | 2 | 3expb 1194 | . . 3 |
4 | 1, 3 | sylan 281 | . 2 |
5 | adddir 7890 | . . . . 5 | |
6 | 5 | 3expa 1193 | . . . 4 |
7 | 6 | adantrr 471 | . . 3 |
8 | adddir 7890 | . . . . 5 | |
9 | 8 | 3expa 1193 | . . . 4 |
10 | 9 | adantrl 470 | . . 3 |
11 | 7, 10 | oveq12d 5860 | . 2 |
12 | mulcl 7880 | . . . . 5 | |
13 | 12 | ad2ant2r 501 | . . . 4 |
14 | mulcl 7880 | . . . . 5 | |
15 | 14 | ad2ant2lr 502 | . . . 4 |
16 | mulcl 7880 | . . . . . . 7 | |
17 | mulcl 7880 | . . . . . . 7 | |
18 | addcl 7878 | . . . . . . 7 | |
19 | 16, 17, 18 | syl2an 287 | . . . . . 6 |
20 | 19 | anandirs 583 | . . . . 5 |
21 | 20 | adantrl 470 | . . . 4 |
22 | 13, 15, 21 | add32d 8066 | . . 3 |
23 | mulcom 7882 | . . . . . . 7 | |
24 | 23 | ad2ant2l 500 | . . . . . 6 |
25 | 24 | oveq2d 5858 | . . . . 5 |
26 | 16 | ad2ant2rl 503 | . . . . . 6 |
27 | 17 | ad2ant2l 500 | . . . . . 6 |
28 | 13, 26, 27 | addassd 7921 | . . . . 5 |
29 | mulcl 7880 | . . . . . . . 8 | |
30 | 29 | ancoms 266 | . . . . . . 7 |
31 | 30 | ad2ant2l 500 | . . . . . 6 |
32 | 13, 26, 31 | add32d 8066 | . . . . 5 |
33 | 25, 28, 32 | 3eqtr3d 2206 | . . . 4 |
34 | mulcom 7882 | . . . . 5 | |
35 | 34 | ad2ant2lr 502 | . . . 4 |
36 | 33, 35 | oveq12d 5860 | . . 3 |
37 | addcl 7878 | . . . . . 6 | |
38 | 12, 30, 37 | syl2an 287 | . . . . 5 |
39 | 38 | an4s 578 | . . . 4 |
40 | mulcl 7880 | . . . . . 6 | |
41 | 40 | ancoms 266 | . . . . 5 |
42 | 41 | ad2ant2lr 502 | . . . 4 |
43 | 39, 26, 42 | addassd 7921 | . . 3 |
44 | 22, 36, 43 | 3eqtrd 2202 | . 2 |
45 | 4, 11, 44 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 caddc 7756 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: mulsub 8299 muladdi 8307 muladdd 8314 sqabsadd 10997 demoivreALT 11714 |
Copyright terms: Public domain | W3C validator |