| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > muladd | Unicode version | ||
| Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| muladd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8120 |
. . 3
| |
| 2 | adddi 8127 |
. . . 4
| |
| 3 | 2 | 3expb 1228 |
. . 3
|
| 4 | 1, 3 | sylan 283 |
. 2
|
| 5 | adddir 8133 |
. . . . 5
| |
| 6 | 5 | 3expa 1227 |
. . . 4
|
| 7 | 6 | adantrr 479 |
. . 3
|
| 8 | adddir 8133 |
. . . . 5
| |
| 9 | 8 | 3expa 1227 |
. . . 4
|
| 10 | 9 | adantrl 478 |
. . 3
|
| 11 | 7, 10 | oveq12d 6018 |
. 2
|
| 12 | mulcl 8122 |
. . . . 5
| |
| 13 | 12 | ad2ant2r 509 |
. . . 4
|
| 14 | mulcl 8122 |
. . . . 5
| |
| 15 | 14 | ad2ant2lr 510 |
. . . 4
|
| 16 | mulcl 8122 |
. . . . . . 7
| |
| 17 | mulcl 8122 |
. . . . . . 7
| |
| 18 | addcl 8120 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | syl2an 289 |
. . . . . 6
|
| 20 | 19 | anandirs 595 |
. . . . 5
|
| 21 | 20 | adantrl 478 |
. . . 4
|
| 22 | 13, 15, 21 | add32d 8310 |
. . 3
|
| 23 | mulcom 8124 |
. . . . . . 7
| |
| 24 | 23 | ad2ant2l 508 |
. . . . . 6
|
| 25 | 24 | oveq2d 6016 |
. . . . 5
|
| 26 | 16 | ad2ant2rl 511 |
. . . . . 6
|
| 27 | 17 | ad2ant2l 508 |
. . . . . 6
|
| 28 | 13, 26, 27 | addassd 8165 |
. . . . 5
|
| 29 | mulcl 8122 |
. . . . . . . 8
| |
| 30 | 29 | ancoms 268 |
. . . . . . 7
|
| 31 | 30 | ad2ant2l 508 |
. . . . . 6
|
| 32 | 13, 26, 31 | add32d 8310 |
. . . . 5
|
| 33 | 25, 28, 32 | 3eqtr3d 2270 |
. . . 4
|
| 34 | mulcom 8124 |
. . . . 5
| |
| 35 | 34 | ad2ant2lr 510 |
. . . 4
|
| 36 | 33, 35 | oveq12d 6018 |
. . 3
|
| 37 | addcl 8120 |
. . . . . 6
| |
| 38 | 12, 30, 37 | syl2an 289 |
. . . . 5
|
| 39 | 38 | an4s 590 |
. . . 4
|
| 40 | mulcl 8122 |
. . . . . 6
| |
| 41 | 40 | ancoms 268 |
. . . . 5
|
| 42 | 41 | ad2ant2lr 510 |
. . . 4
|
| 43 | 39, 26, 42 | addassd 8165 |
. . 3
|
| 44 | 22, 36, 43 | 3eqtrd 2266 |
. 2
|
| 45 | 4, 11, 44 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-addcl 8091 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-distr 8099 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: mulsub 8543 muladdi 8551 muladdd 8558 sqabsadd 11561 demoivreALT 12280 |
| Copyright terms: Public domain | W3C validator |