Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muladd | Unicode version |
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
muladd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl 7857 | . . 3 | |
2 | adddi 7864 | . . . 4 | |
3 | 2 | 3expb 1186 | . . 3 |
4 | 1, 3 | sylan 281 | . 2 |
5 | adddir 7869 | . . . . 5 | |
6 | 5 | 3expa 1185 | . . . 4 |
7 | 6 | adantrr 471 | . . 3 |
8 | adddir 7869 | . . . . 5 | |
9 | 8 | 3expa 1185 | . . . 4 |
10 | 9 | adantrl 470 | . . 3 |
11 | 7, 10 | oveq12d 5842 | . 2 |
12 | mulcl 7859 | . . . . 5 | |
13 | 12 | ad2ant2r 501 | . . . 4 |
14 | mulcl 7859 | . . . . 5 | |
15 | 14 | ad2ant2lr 502 | . . . 4 |
16 | mulcl 7859 | . . . . . . 7 | |
17 | mulcl 7859 | . . . . . . 7 | |
18 | addcl 7857 | . . . . . . 7 | |
19 | 16, 17, 18 | syl2an 287 | . . . . . 6 |
20 | 19 | anandirs 583 | . . . . 5 |
21 | 20 | adantrl 470 | . . . 4 |
22 | 13, 15, 21 | add32d 8043 | . . 3 |
23 | mulcom 7861 | . . . . . . 7 | |
24 | 23 | ad2ant2l 500 | . . . . . 6 |
25 | 24 | oveq2d 5840 | . . . . 5 |
26 | 16 | ad2ant2rl 503 | . . . . . 6 |
27 | 17 | ad2ant2l 500 | . . . . . 6 |
28 | 13, 26, 27 | addassd 7900 | . . . . 5 |
29 | mulcl 7859 | . . . . . . . 8 | |
30 | 29 | ancoms 266 | . . . . . . 7 |
31 | 30 | ad2ant2l 500 | . . . . . 6 |
32 | 13, 26, 31 | add32d 8043 | . . . . 5 |
33 | 25, 28, 32 | 3eqtr3d 2198 | . . . 4 |
34 | mulcom 7861 | . . . . 5 | |
35 | 34 | ad2ant2lr 502 | . . . 4 |
36 | 33, 35 | oveq12d 5842 | . . 3 |
37 | addcl 7857 | . . . . . 6 | |
38 | 12, 30, 37 | syl2an 287 | . . . . 5 |
39 | 38 | an4s 578 | . . . 4 |
40 | mulcl 7859 | . . . . . 6 | |
41 | 40 | ancoms 266 | . . . . 5 |
42 | 41 | ad2ant2lr 502 | . . . 4 |
43 | 39, 26, 42 | addassd 7900 | . . 3 |
44 | 22, 36, 43 | 3eqtrd 2194 | . 2 |
45 | 4, 11, 44 | 3eqtrd 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 (class class class)co 5824 cc 7730 caddc 7735 cmul 7737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-addcl 7828 ax-mulcl 7830 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-distr 7836 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5135 df-fv 5178 df-ov 5827 |
This theorem is referenced by: mulsub 8276 muladdi 8284 muladdd 8291 sqabsadd 10955 demoivreALT 11670 |
Copyright terms: Public domain | W3C validator |