ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd Unicode version

Theorem muladd 8170
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
muladd  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem muladd
StepHypRef Expression
1 addcl 7769 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 adddi 7776 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC  /\  D  e.  CC )  ->  (
( A  +  B
)  x.  ( C  +  D ) )  =  ( ( ( A  +  B )  x.  C )  +  ( ( A  +  B )  x.  D
) ) )
323expb 1183 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  x.  ( C  +  D
) )  =  ( ( ( A  +  B )  x.  C
)  +  ( ( A  +  B )  x.  D ) ) )
41, 3sylan 281 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  +  B
)  x.  C )  +  ( ( A  +  B )  x.  D ) ) )
5 adddir 7781 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
653expa 1182 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C
)  +  ( B  x.  C ) ) )
76adantrr 471 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  C
)  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
8 adddir 7781 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
( A  +  B
)  x.  D )  =  ( ( A  x.  D )  +  ( B  x.  D
) ) )
983expa 1182 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  D  e.  CC )  ->  ( ( A  +  B )  x.  D )  =  ( ( A  x.  D
)  +  ( B  x.  D ) ) )
109adantrl 470 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  D
)  =  ( ( A  x.  D )  +  ( B  x.  D ) ) )
117, 10oveq12d 5800 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  +  B )  x.  C )  +  ( ( A  +  B
)  x.  D ) )  =  ( ( ( A  x.  C
)  +  ( B  x.  C ) )  +  ( ( A  x.  D )  +  ( B  x.  D
) ) ) )
12 mulcl 7771 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
1312ad2ant2r 501 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  x.  C
)  e.  CC )
14 mulcl 7771 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
1514ad2ant2lr 502 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  C
)  e.  CC )
16 mulcl 7771 . . . . . . 7  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
17 mulcl 7771 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( B  x.  D
)  e.  CC )
18 addcl 7769 . . . . . . 7  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  D
)  e.  CC )  ->  ( ( A  x.  D )  +  ( B  x.  D
) )  e.  CC )
1916, 17, 18syl2an 287 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( B  x.  D ) )  e.  CC )
2019anandirs 583 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  D  e.  CC )  ->  ( ( A  x.  D )  +  ( B  x.  D
) )  e.  CC )
2120adantrl 470 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( B  x.  D ) )  e.  CC )
2213, 15, 21add32d 7954 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( B  x.  C
) )  +  ( ( A  x.  D
)  +  ( B  x.  D ) ) )  =  ( ( ( A  x.  C
)  +  ( ( A  x.  D )  +  ( B  x.  D ) ) )  +  ( B  x.  C ) ) )
23 mulcom 7773 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( B  x.  D
)  =  ( D  x.  B ) )
2423ad2ant2l 500 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  D
)  =  ( D  x.  B ) )
2524oveq2d 5798 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( A  x.  D
) )  +  ( B  x.  D ) )  =  ( ( ( A  x.  C
)  +  ( A  x.  D ) )  +  ( D  x.  B ) ) )
2616ad2ant2rl 503 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  x.  D
)  e.  CC )
2717ad2ant2l 500 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  D
)  e.  CC )
2813, 26, 27addassd 7812 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( A  x.  D
) )  +  ( B  x.  D ) )  =  ( ( A  x.  C )  +  ( ( A  x.  D )  +  ( B  x.  D
) ) ) )
29 mulcl 7771 . . . . . . . 8  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D  x.  B
)  e.  CC )
3029ancoms 266 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( D  x.  B
)  e.  CC )
3130ad2ant2l 500 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( D  x.  B
)  e.  CC )
3213, 26, 31add32d 7954 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( A  x.  D
) )  +  ( D  x.  B ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( A  x.  D ) ) )
3325, 28, 323eqtr3d 2181 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( ( A  x.  D
)  +  ( B  x.  D ) ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( A  x.  D ) ) )
34 mulcom 7773 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
3534ad2ant2lr 502 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  C
)  =  ( C  x.  B ) )
3633, 35oveq12d 5800 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( ( A  x.  D )  +  ( B  x.  D ) ) )  +  ( B  x.  C ) )  =  ( ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( A  x.  D ) )  +  ( C  x.  B ) ) )
37 addcl 7769 . . . . . 6  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( D  x.  B
)  e.  CC )  ->  ( ( A  x.  C )  +  ( D  x.  B
) )  e.  CC )
3812, 30, 37syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
3938an4s 578 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
40 mulcl 7771 . . . . . 6  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
4140ancoms 266 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
4241ad2ant2lr 502 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  x.  B
)  e.  CC )
4339, 26, 42addassd 7812 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( A  x.  D
) )  +  ( C  x.  B ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
4422, 36, 433eqtrd 2177 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( B  x.  C
) )  +  ( ( A  x.  D
)  +  ( B  x.  D ) ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
454, 11, 443eqtrd 2177 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481  (class class class)co 5782   CCcc 7642    + caddc 7647    x. cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-addcl 7740  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-distr 7748
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-un 3080  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-iota 5096  df-fv 5139  df-ov 5785
This theorem is referenced by:  mulsub  8187  muladdi  8195  muladdd  8202  sqabsadd  10859  demoivreALT  11516
  Copyright terms: Public domain W3C validator