Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muladd | Unicode version |
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
muladd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl 7899 | . . 3 | |
2 | adddi 7906 | . . . 4 | |
3 | 2 | 3expb 1199 | . . 3 |
4 | 1, 3 | sylan 281 | . 2 |
5 | adddir 7911 | . . . . 5 | |
6 | 5 | 3expa 1198 | . . . 4 |
7 | 6 | adantrr 476 | . . 3 |
8 | adddir 7911 | . . . . 5 | |
9 | 8 | 3expa 1198 | . . . 4 |
10 | 9 | adantrl 475 | . . 3 |
11 | 7, 10 | oveq12d 5871 | . 2 |
12 | mulcl 7901 | . . . . 5 | |
13 | 12 | ad2ant2r 506 | . . . 4 |
14 | mulcl 7901 | . . . . 5 | |
15 | 14 | ad2ant2lr 507 | . . . 4 |
16 | mulcl 7901 | . . . . . . 7 | |
17 | mulcl 7901 | . . . . . . 7 | |
18 | addcl 7899 | . . . . . . 7 | |
19 | 16, 17, 18 | syl2an 287 | . . . . . 6 |
20 | 19 | anandirs 588 | . . . . 5 |
21 | 20 | adantrl 475 | . . . 4 |
22 | 13, 15, 21 | add32d 8087 | . . 3 |
23 | mulcom 7903 | . . . . . . 7 | |
24 | 23 | ad2ant2l 505 | . . . . . 6 |
25 | 24 | oveq2d 5869 | . . . . 5 |
26 | 16 | ad2ant2rl 508 | . . . . . 6 |
27 | 17 | ad2ant2l 505 | . . . . . 6 |
28 | 13, 26, 27 | addassd 7942 | . . . . 5 |
29 | mulcl 7901 | . . . . . . . 8 | |
30 | 29 | ancoms 266 | . . . . . . 7 |
31 | 30 | ad2ant2l 505 | . . . . . 6 |
32 | 13, 26, 31 | add32d 8087 | . . . . 5 |
33 | 25, 28, 32 | 3eqtr3d 2211 | . . . 4 |
34 | mulcom 7903 | . . . . 5 | |
35 | 34 | ad2ant2lr 507 | . . . 4 |
36 | 33, 35 | oveq12d 5871 | . . 3 |
37 | addcl 7899 | . . . . . 6 | |
38 | 12, 30, 37 | syl2an 287 | . . . . 5 |
39 | 38 | an4s 583 | . . . 4 |
40 | mulcl 7901 | . . . . . 6 | |
41 | 40 | ancoms 266 | . . . . 5 |
42 | 41 | ad2ant2lr 507 | . . . 4 |
43 | 39, 26, 42 | addassd 7942 | . . 3 |
44 | 22, 36, 43 | 3eqtrd 2207 | . 2 |
45 | 4, 11, 44 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-distr 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: mulsub 8320 muladdi 8328 muladdd 8335 sqabsadd 11019 demoivreALT 11736 |
Copyright terms: Public domain | W3C validator |