ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzaddel Unicode version

Theorem fzaddel 9470
Description: Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzaddel  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )

Proof of Theorem fzaddel
StepHypRef Expression
1 simpl 107 . . . . 5  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  J  e.  ZZ )
2 zaddcl 8788 . . . . 5  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  +  K
)  e.  ZZ )
31, 22thd 173 . . . 4  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  e.  ZZ  <->  ( J  +  K )  e.  ZZ ) )
43adantl 271 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ZZ  <->  ( J  +  K )  e.  ZZ ) )
5 zre 8752 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
6 zre 8752 . . . . . 6  |-  ( J  e.  ZZ  ->  J  e.  RR )
7 zre 8752 . . . . . 6  |-  ( K  e.  ZZ  ->  K  e.  RR )
8 leadd1 7906 . . . . . 6  |-  ( ( M  e.  RR  /\  J  e.  RR  /\  K  e.  RR )  ->  ( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K )
) )
95, 6, 7, 8syl3an 1216 . . . . 5  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K )
) )
1093expb 1144 . . . 4  |-  ( ( M  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K )
) )
1110adantlr 461 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K ) ) )
12 zre 8752 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
13 leadd1 7906 . . . . . . 7  |-  ( ( J  e.  RR  /\  N  e.  RR  /\  K  e.  RR )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
146, 12, 7, 13syl3an 1216 . . . . . 6  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
15143com12 1147 . . . . 5  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
16153expb 1144 . . . 4  |-  ( ( N  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
1716adantll 460 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K ) ) )
184, 11, 173anbi123d 1248 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  e.  ZZ  /\  M  <_  J  /\  J  <_  N
)  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
19 elfz1 9427 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  e.  ( M ... N )  <-> 
( J  e.  ZZ  /\  M  <_  J  /\  J  <_  N ) ) )
2019adantr 270 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  e.  ZZ  /\  M  <_  J  /\  J  <_  N ) ) )
21 zaddcl 8788 . . . . 5  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K
)  e.  ZZ )
22 zaddcl 8788 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
23 elfz1 9427 . . . . 5  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( J  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2421, 22, 23syl2an 283 . . . 4  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) )  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2524anandirs 560 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( J  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2625adantrl 462 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) )  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2718, 20, 263bitr4d 218 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    e. wcel 1438   class class class wbr 3845  (class class class)co 5652   RRcr 7347    + caddc 7351    <_ cle 7521   ZZcz 8748   ...cfz 9422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-fz 9423
This theorem is referenced by:  fzsubel  9471  isermono  9902  bcp1nk  10166  mptfzshft  10832  binomlem  10873
  Copyright terms: Public domain W3C validator