ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdil Unicode version

Theorem iccdil 10150
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1  |-  ( A  x.  R )  =  C
iccdil.2  |-  ( B  x.  R )  =  D
Assertion
Ref Expression
iccdil  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  ->  X  e.  RR )
2 rpre 9812 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
3 remulcl 8083 . . . . . 6  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  x.  R
)  e.  RR )
42, 3sylan2 286 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  x.  R
)  e.  RR )
51, 42thd 175 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  RR  <->  ( X  x.  R )  e.  RR ) )
65adantl 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  RR  <->  ( X  x.  R )  e.  RR ) )
7 elrp 9807 . . . . . . 7  |-  ( R  e.  RR+  <->  ( R  e.  RR  /\  0  < 
R ) )
8 lemul1 8696 . . . . . . 7  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R ) ) )
97, 8syl3an3b 1288 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR+ )  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
1093expb 1207 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
1110adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
12 iccdil.1 . . . . 5  |-  ( A  x.  R )  =  C
1312breq1i 4061 . . . 4  |-  ( ( A  x.  R )  <_  ( X  x.  R )  <->  C  <_  ( X  x.  R ) )
1411, 13bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  C  <_  ( X  x.  R ) ) )
15 lemul1 8696 . . . . . . . 8  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R ) ) )
167, 15syl3an3b 1288 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR+ )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
17163expb 1207 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
1817an12s 565 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
1918adantll 476 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
20 iccdil.2 . . . . 5  |-  ( B  x.  R )  =  D
2120breq2i 4062 . . . 4  |-  ( ( X  x.  R )  <_  ( B  x.  R )  <->  ( X  x.  R )  <_  D
)
2219, 21bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  D
) )
236, 14, 223anbi123d 1325 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  e.  RR  /\  A  <_  X  /\  X  <_  B )  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
24 elicc2 10090 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2524adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
) ) )
26 remulcl 8083 . . . . . . 7  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  x.  R
)  e.  RR )
2712, 26eqeltrrid 2294 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
28 remulcl 8083 . . . . . . 7  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  x.  R
)  e.  RR )
2920, 28eqeltrrid 2294 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
30 elicc2 10090 . . . . . 6  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  x.  R )  e.  ( C [,] D )  <-> 
( ( X  x.  R )  e.  RR  /\  C  <_  ( X  x.  R )  /\  ( X  x.  R )  <_  D ) ) )
3127, 29, 30syl2an 289 . . . . 5  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  x.  R )  e.  ( C [,] D )  <-> 
( ( X  x.  R )  e.  RR  /\  C  <_  ( X  x.  R )  /\  ( X  x.  R )  <_  D ) ) )
3231anandirs 593 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  x.  R )  e.  ( C [,] D
)  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
332, 32sylan2 286 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR+ )  ->  ( ( X  x.  R )  e.  ( C [,] D
)  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
3433adantrl 478 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  x.  R
)  e.  ( C [,] D )  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
3523, 25, 343bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4054  (class class class)co 5962   RRcr 7954   0cc0 7955    x. cmul 7960    < clt 8137    <_ cle 8138   RR+crp 9805   [,]cicc 10043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071  ax-pre-mulgt0 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-rp 9806  df-icc 10047
This theorem is referenced by:  iccdili  10151  lincmb01cmp  10155  iccf1o  10156
  Copyright terms: Public domain W3C validator