ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdil Unicode version

Theorem iccdil 10119
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1  |-  ( A  x.  R )  =  C
iccdil.2  |-  ( B  x.  R )  =  D
Assertion
Ref Expression
iccdil  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  ->  X  e.  RR )
2 rpre 9781 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
3 remulcl 8052 . . . . . 6  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  x.  R
)  e.  RR )
42, 3sylan2 286 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  x.  R
)  e.  RR )
51, 42thd 175 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  RR  <->  ( X  x.  R )  e.  RR ) )
65adantl 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  RR  <->  ( X  x.  R )  e.  RR ) )
7 elrp 9776 . . . . . . 7  |-  ( R  e.  RR+  <->  ( R  e.  RR  /\  0  < 
R ) )
8 lemul1 8665 . . . . . . 7  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R ) ) )
97, 8syl3an3b 1287 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR+ )  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
1093expb 1206 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
1110adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
12 iccdil.1 . . . . 5  |-  ( A  x.  R )  =  C
1312breq1i 4050 . . . 4  |-  ( ( A  x.  R )  <_  ( X  x.  R )  <->  C  <_  ( X  x.  R ) )
1411, 13bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  C  <_  ( X  x.  R ) ) )
15 lemul1 8665 . . . . . . . 8  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R ) ) )
167, 15syl3an3b 1287 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR+ )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
17163expb 1206 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
1817an12s 565 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
1918adantll 476 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
20 iccdil.2 . . . . 5  |-  ( B  x.  R )  =  D
2120breq2i 4051 . . . 4  |-  ( ( X  x.  R )  <_  ( B  x.  R )  <->  ( X  x.  R )  <_  D
)
2219, 21bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  D
) )
236, 14, 223anbi123d 1324 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  e.  RR  /\  A  <_  X  /\  X  <_  B )  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
24 elicc2 10059 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2524adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
) ) )
26 remulcl 8052 . . . . . . 7  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  x.  R
)  e.  RR )
2712, 26eqeltrrid 2292 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
28 remulcl 8052 . . . . . . 7  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  x.  R
)  e.  RR )
2920, 28eqeltrrid 2292 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
30 elicc2 10059 . . . . . 6  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  x.  R )  e.  ( C [,] D )  <-> 
( ( X  x.  R )  e.  RR  /\  C  <_  ( X  x.  R )  /\  ( X  x.  R )  <_  D ) ) )
3127, 29, 30syl2an 289 . . . . 5  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  x.  R )  e.  ( C [,] D )  <-> 
( ( X  x.  R )  e.  RR  /\  C  <_  ( X  x.  R )  /\  ( X  x.  R )  <_  D ) ) )
3231anandirs 593 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  x.  R )  e.  ( C [,] D
)  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
332, 32sylan2 286 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR+ )  ->  ( ( X  x.  R )  e.  ( C [,] D
)  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
3433adantrl 478 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  x.  R
)  e.  ( C [,] D )  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
3523, 25, 343bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   RRcr 7923   0cc0 7924    x. cmul 7929    < clt 8106    <_ cle 8107   RR+crp 9774   [,]cicc 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040  ax-pre-mulgt0 8041
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-rp 9775  df-icc 10016
This theorem is referenced by:  iccdili  10120  lincmb01cmp  10124  iccf1o  10125
  Copyright terms: Public domain W3C validator