ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdil Unicode version

Theorem iccdil 10090
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1  |-  ( A  x.  R )  =  C
iccdil.2  |-  ( B  x.  R )  =  D
Assertion
Ref Expression
iccdil  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  ->  X  e.  RR )
2 rpre 9752 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
3 remulcl 8024 . . . . . 6  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  x.  R
)  e.  RR )
42, 3sylan2 286 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  x.  R
)  e.  RR )
51, 42thd 175 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  RR  <->  ( X  x.  R )  e.  RR ) )
65adantl 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  RR  <->  ( X  x.  R )  e.  RR ) )
7 elrp 9747 . . . . . . 7  |-  ( R  e.  RR+  <->  ( R  e.  RR  /\  0  < 
R ) )
8 lemul1 8637 . . . . . . 7  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R ) ) )
97, 8syl3an3b 1287 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR+ )  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
1093expb 1206 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
1110adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  ( A  x.  R )  <_  ( X  x.  R )
) )
12 iccdil.1 . . . . 5  |-  ( A  x.  R )  =  C
1312breq1i 4041 . . . 4  |-  ( ( A  x.  R )  <_  ( X  x.  R )  <->  C  <_  ( X  x.  R ) )
1411, 13bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  C  <_  ( X  x.  R ) ) )
15 lemul1 8637 . . . . . . . 8  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R ) ) )
167, 15syl3an3b 1287 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR+ )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
17163expb 1206 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
1817an12s 565 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
1918adantll 476 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  ( B  x.  R )
) )
20 iccdil.2 . . . . 5  |-  ( B  x.  R )  =  D
2120breq2i 4042 . . . 4  |-  ( ( X  x.  R )  <_  ( B  x.  R )  <->  ( X  x.  R )  <_  D
)
2219, 21bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  x.  R )  <_  D
) )
236, 14, 223anbi123d 1323 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  e.  RR  /\  A  <_  X  /\  X  <_  B )  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
24 elicc2 10030 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2524adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
) ) )
26 remulcl 8024 . . . . . . 7  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  x.  R
)  e.  RR )
2712, 26eqeltrrid 2284 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
28 remulcl 8024 . . . . . . 7  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  x.  R
)  e.  RR )
2920, 28eqeltrrid 2284 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
30 elicc2 10030 . . . . . 6  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  x.  R )  e.  ( C [,] D )  <-> 
( ( X  x.  R )  e.  RR  /\  C  <_  ( X  x.  R )  /\  ( X  x.  R )  <_  D ) ) )
3127, 29, 30syl2an 289 . . . . 5  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  x.  R )  e.  ( C [,] D )  <-> 
( ( X  x.  R )  e.  RR  /\  C  <_  ( X  x.  R )  /\  ( X  x.  R )  <_  D ) ) )
3231anandirs 593 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  x.  R )  e.  ( C [,] D
)  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
332, 32sylan2 286 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR+ )  ->  ( ( X  x.  R )  e.  ( C [,] D
)  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
3433adantrl 478 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  x.  R
)  e.  ( C [,] D )  <->  ( ( X  x.  R )  e.  RR  /\  C  <_ 
( X  x.  R
)  /\  ( X  x.  R )  <_  D
) ) )
3523, 25, 343bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896    x. cmul 7901    < clt 8078    <_ cle 8079   RR+crp 9745   [,]cicc 9983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-rp 9746  df-icc 9987
This theorem is referenced by:  iccdili  10091  lincmb01cmp  10095  iccf1o  10096
  Copyright terms: Public domain W3C validator