| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccdil | Unicode version | ||
| Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iccdil.1 |
|
| iccdil.2 |
|
| Ref | Expression |
|---|---|
| iccdil |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | rpre 9852 |
. . . . . 6
| |
| 3 | remulcl 8123 |
. . . . . 6
| |
| 4 | 2, 3 | sylan2 286 |
. . . . 5
|
| 5 | 1, 4 | 2thd 175 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | elrp 9847 |
. . . . . . 7
| |
| 8 | lemul1 8736 |
. . . . . . 7
| |
| 9 | 7, 8 | syl3an3b 1309 |
. . . . . 6
|
| 10 | 9 | 3expb 1228 |
. . . . 5
|
| 11 | 10 | adantlr 477 |
. . . 4
|
| 12 | iccdil.1 |
. . . . 5
| |
| 13 | 12 | breq1i 4089 |
. . . 4
|
| 14 | 11, 13 | bitrdi 196 |
. . 3
|
| 15 | lemul1 8736 |
. . . . . . . 8
| |
| 16 | 7, 15 | syl3an3b 1309 |
. . . . . . 7
|
| 17 | 16 | 3expb 1228 |
. . . . . 6
|
| 18 | 17 | an12s 565 |
. . . . 5
|
| 19 | 18 | adantll 476 |
. . . 4
|
| 20 | iccdil.2 |
. . . . 5
| |
| 21 | 20 | breq2i 4090 |
. . . 4
|
| 22 | 19, 21 | bitrdi 196 |
. . 3
|
| 23 | 6, 14, 22 | 3anbi123d 1346 |
. 2
|
| 24 | elicc2 10130 |
. . 3
| |
| 25 | 24 | adantr 276 |
. 2
|
| 26 | remulcl 8123 |
. . . . . . 7
| |
| 27 | 12, 26 | eqeltrrid 2317 |
. . . . . 6
|
| 28 | remulcl 8123 |
. . . . . . 7
| |
| 29 | 20, 28 | eqeltrrid 2317 |
. . . . . 6
|
| 30 | elicc2 10130 |
. . . . . 6
| |
| 31 | 27, 29, 30 | syl2an 289 |
. . . . 5
|
| 32 | 31 | anandirs 595 |
. . . 4
|
| 33 | 2, 32 | sylan2 286 |
. . 3
|
| 34 | 33 | adantrl 478 |
. 2
|
| 35 | 23, 25, 34 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-rp 9846 df-icc 10087 |
| This theorem is referenced by: iccdili 10191 lincmb01cmp 10195 iccf1o 10196 |
| Copyright terms: Public domain | W3C validator |