ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icccntr Unicode version

Theorem icccntr 10069
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
icccntr.1  |-  ( A  /  R )  =  C
icccntr.2  |-  ( B  /  R )  =  D
Assertion
Ref Expression
icccntr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  /  R )  e.  ( C [,] D ) ) )

Proof of Theorem icccntr
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  ->  X  e.  RR )
2 rerpdivcl 9753 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  /  R
)  e.  RR )
31, 22thd 175 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  RR  <->  ( X  /  R )  e.  RR ) )
43adantl 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  RR  <->  ( X  /  R )  e.  RR ) )
5 elrp 9724 . . . . . . 7  |-  ( R  e.  RR+  <->  ( R  e.  RR  /\  0  < 
R ) )
6 lediv1 8890 . . . . . . 7  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( A  <_  X  <->  ( A  /  R )  <_  ( X  /  R ) ) )
75, 6syl3an3b 1287 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR+ )  ->  ( A  <_  X  <->  ( A  /  R )  <_  ( X  /  R ) ) )
873expb 1206 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( A  <_  X  <->  ( A  /  R )  <_  ( X  /  R ) ) )
98adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  ( A  /  R )  <_  ( X  /  R ) ) )
10 icccntr.1 . . . . 5  |-  ( A  /  R )  =  C
1110breq1i 4037 . . . 4  |-  ( ( A  /  R )  <_  ( X  /  R )  <->  C  <_  ( X  /  R ) )
129, 11bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( A  <_  X  <->  C  <_  ( X  /  R ) ) )
13 lediv1 8890 . . . . . . . 8  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  ( R  e.  RR  /\  0  <  R ) )  -> 
( X  <_  B  <->  ( X  /  R )  <_  ( B  /  R ) ) )
145, 13syl3an3b 1287 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR+ )  ->  ( X  <_  B  <->  ( X  /  R )  <_  ( B  /  R ) ) )
15143expb 1206 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  /  R )  <_  ( B  /  R ) ) )
1615an12s 565 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR+ )
)  ->  ( X  <_  B  <->  ( X  /  R )  <_  ( B  /  R ) ) )
1716adantll 476 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  /  R )  <_  ( B  /  R ) ) )
18 icccntr.2 . . . . 5  |-  ( B  /  R )  =  D
1918breq2i 4038 . . . 4  |-  ( ( X  /  R )  <_  ( B  /  R )  <->  ( X  /  R )  <_  D
)
2017, 19bitrdi 196 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  <_  B  <->  ( X  /  R )  <_  D
) )
214, 12, 203anbi123d 1323 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  e.  RR  /\  A  <_  X  /\  X  <_  B )  <->  ( ( X  /  R )  e.  RR  /\  C  <_ 
( X  /  R
)  /\  ( X  /  R )  <_  D
) ) )
22 elicc2 10007 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2322adantr 276 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
) ) )
24 rerpdivcl 9753 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR+ )  -> 
( A  /  R
)  e.  RR )
2510, 24eqeltrrid 2281 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR+ )  ->  C  e.  RR )
26 rerpdivcl 9753 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR+ )  -> 
( B  /  R
)  e.  RR )
2718, 26eqeltrrid 2281 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR+ )  ->  D  e.  RR )
28 elicc2 10007 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  /  R )  e.  ( C [,] D )  <-> 
( ( X  /  R )  e.  RR  /\  C  <_  ( X  /  R )  /\  ( X  /  R )  <_  D ) ) )
2925, 27, 28syl2an 289 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR+ )  /\  ( B  e.  RR  /\  R  e.  RR+ )
)  ->  ( ( X  /  R )  e.  ( C [,] D
)  <->  ( ( X  /  R )  e.  RR  /\  C  <_ 
( X  /  R
)  /\  ( X  /  R )  <_  D
) ) )
3029anandirs 593 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR+ )  ->  ( ( X  /  R )  e.  ( C [,] D
)  <->  ( ( X  /  R )  e.  RR  /\  C  <_ 
( X  /  R
)  /\  ( X  /  R )  <_  D
) ) )
3130adantrl 478 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  (
( X  /  R
)  e.  ( C [,] D )  <->  ( ( X  /  R )  e.  RR  /\  C  <_ 
( X  /  R
)  /\  ( X  /  R )  <_  D
) ) )
3221, 23, 313bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  /  R )  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   RRcr 7873   0cc0 7874    < clt 8056    <_ cle 8057    / cdiv 8693   RR+crp 9722   [,]cicc 9960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-rp 9723  df-icc 9964
This theorem is referenced by:  icccntri  10070
  Copyright terms: Public domain W3C validator