ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq Unicode version

Theorem qredeq 11623
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 8963 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
21adantr 272 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3 nncn 8638 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
43adantl 273 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
5 nnap0 8659 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N #  0 )
65adantl 273 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
72, 4, 6divclapd 8463 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
873adant3 984 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  /  N )  e.  CC )
98adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  /  N )  e.  CC )
10 zcn 8963 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  P  e.  CC )
1110adantr 272 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  P  e.  CC )
12 nncn 8638 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q  e.  CC )
1312adantl 273 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q  e.  CC )
14 nnap0 8659 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q #  0 )
1514adantl 273 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q #  0 )
1611, 13, 15divclapd 8463 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( P  /  Q
)  e.  CC )
17163adant3 984 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  /  Q )  e.  CC )
1817adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( P  /  Q )  e.  CC )
1933ad2ant2 986 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  CC )
2019adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  CC )
2153ad2ant2 986 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N #  0 )
2221adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N #  0 )
239, 18, 20, 22mulcanapd 8335 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  /  N
)  =  ( P  /  Q ) ) )
242, 4, 6divcanap2d 8465 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
25243adant3 984 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  x.  ( M  /  N ) )  =  M )
2625adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( M  /  N
) )  =  M )
2726eqeq1d 2123 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
M  =  ( N  x.  ( P  /  Q ) ) ) )
2823, 27bitr3d 189 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
2913ad2ant1 985 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  CC )
3029adantr 272 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  CC )
31 mulcl 7671 . . . . . . 7  |-  ( ( N  e.  CC  /\  ( P  /  Q
)  e.  CC )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
3219, 17, 31syl2an 285 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
33123ad2ant2 986 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  CC )
3433adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  CC )
35143ad2ant2 986 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q #  0 )
3635adantl 273 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q #  0 )
3730, 32, 34, 36mulcanap2d 8336 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
3820, 18, 34mulassd 7713 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  ( ( P  /  Q )  x.  Q ) ) )
3911, 13, 15divcanap1d 8464 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( ( P  /  Q )  x.  Q
)  =  P )
40393adant3 984 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  (
( P  /  Q
)  x.  Q )  =  P )
4140adantl 273 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( P  /  Q )  x.  Q )  =  P )
4241oveq2d 5744 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( ( P  /  Q )  x.  Q
) )  =  ( N  x.  P ) )
4338, 42eqtrd 2147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  P ) )
4443eqeq2d 2126 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
4537, 44bitr3d 189 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  x.  Q
)  =  ( N  x.  P ) ) )
4628, 45bitrd 187 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
47 nnz 8977 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
48473ad2ant2 986 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
49 simp2 965 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  NN )
5048, 49anim12i 334 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5150adantr 272 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5248adantr 272 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  ZZ )
53 simpl1 967 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  ZZ )
54 nnz 8977 . . . . . . . . . . . 12  |-  ( Q  e.  NN  ->  Q  e.  ZZ )
55543ad2ant2 986 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  ZZ )
5655adantl 273 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  ZZ )
5752, 53, 563jca 1144 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
5857adantr 272 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
59 simp1 964 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  ZZ )
60 dvdsmul1 11363 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  N  ||  ( N  x.  P ) )
6148, 59, 60syl2an 285 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  ||  ( N  x.  P )
)
6261adantr 272 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( N  x.  P )
)
63 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( N  x.  P ) )
6462, 63breqtrrd 3921 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( M  x.  Q )
)
65 gcdcom 11510 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6647, 65sylan 279 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6766ancoms 266 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
68673adant3 984 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N
) )
69 simp3 966 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
7068, 69eqtrd 2147 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
7170ad2antrr 477 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  gcd  M )  =  1 )
7264, 71jca 302 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  ||  ( M  x.  Q
)  /\  ( N  gcd  M )  =  1 ) )
73 coprmdvds 11619 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ )  ->  (
( N  ||  ( M  x.  Q )  /\  ( N  gcd  M
)  =  1 )  ->  N  ||  Q
) )
7458, 72, 73sylc 62 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  Q
)
75 dvdsle 11390 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  Q  e.  NN )  ->  ( N  ||  Q  ->  N  <_  Q )
)
7651, 74, 75sylc 62 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  <_  Q
)
77 simp2 965 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
7855, 77anim12i 334 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
7978ancoms 266 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
8079adantr 272 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
81 simpr1 970 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  ZZ )
8256, 81, 523jca 1144 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
8382adantr 272 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
84 simp1 964 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
85 dvdsmul2 11364 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( M  x.  Q ) )
8684, 55, 85syl2an 285 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  ||  ( M  x.  Q )
)
8786adantr 272 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( M  x.  Q )
)
88103ad2ant1 985 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  CC )
89 mulcom 7673 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  P  e.  CC )  ->  ( N  x.  P
)  =  ( P  x.  N ) )
9019, 88, 89syl2an 285 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9190adantr 272 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9263, 91eqtrd 2147 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( P  x.  N ) )
9387, 92breqtrd 3919 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( P  x.  N )
)
94 gcdcom 11510 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9554, 94sylan 279 . . . . . . . . . . . . 13  |-  ( ( Q  e.  NN  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9695ancoms 266 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
97963adant3 984 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  ( P  gcd  Q
) )
98 simp3 966 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  gcd  Q )  =  1 )
9997, 98eqtrd 2147 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  1 )
10099ad2antlr 478 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  gcd  P )  =  1 )
10193, 100jca 302 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  ||  ( P  x.  N
)  /\  ( Q  gcd  P )  =  1 ) )
102 coprmdvds 11619 . . . . . . . 8  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  (
( Q  ||  ( P  x.  N )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  N
) )
10383, 101, 102sylc 62 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  N
)
104 dvdsle 11390 . . . . . . 7  |-  ( ( Q  e.  ZZ  /\  N  e.  NN )  ->  ( Q  ||  N  ->  Q  <_  N )
)
10580, 103, 104sylc 62 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  <_  N
)
106 nnre 8637 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
1071063ad2ant2 986 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  RR )
108107ad2antrr 477 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  e.  RR )
109 nnre 8637 . . . . . . . . 9  |-  ( Q  e.  NN  ->  Q  e.  RR )
1101093ad2ant2 986 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  RR )
111110ad2antlr 478 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  e.  RR )
112108, 111letri3d 7802 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  <->  ( N  <_  Q  /\  Q  <_  N
) ) )
11376, 105, 112mpbir2and 911 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  =  Q )
114 oveq2 5736 . . . . . . . . . 10  |-  ( N  =  Q  ->  ( M  x.  N )  =  ( M  x.  Q ) )
115114eqeq1d 2123 . . . . . . . . 9  |-  ( N  =  Q  ->  (
( M  x.  N
)  =  ( N  x.  P )  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
116115anbi2d 457 . . . . . . . 8  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  <-> 
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) ) ) )
117 mulcom 7673 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1181, 3, 117syl2an 285 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1191183adant3 984 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  x.  N )  =  ( N  x.  M ) )
120119adantr 272 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
121120eqeq1d 2123 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  ( N  x.  M )  =  ( N  x.  P ) ) )
12288adantl 273 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  CC )
12330, 122, 20, 22mulcanapd 8335 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  M )  =  ( N  x.  P
)  <->  M  =  P
) )
124121, 123bitrd 187 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  M  =  P
) )
125124biimpa 292 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  ->  M  =  P )
126116, 125syl6bir 163 . . . . . . 7  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  M  =  P ) )
127126com12 30 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  M  =  P ) )
128127ancrd 322 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  ( M  =  P  /\  N  =  Q ) ) )
129113, 128mpd 13 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  =  P  /\  N  =  Q ) )
130129ex 114 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( N  x.  P
)  ->  ( M  =  P  /\  N  =  Q ) ) )
13146, 130sylbid 149 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  ->  ( M  =  P  /\  N  =  Q ) ) )
1321313impia 1161 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   class class class wbr 3895  (class class class)co 5728   CCcc 7545   RRcr 7546   0cc0 7547   1c1 7548    x. cmul 7552    <_ cle 7725   # cap 8261    / cdiv 8345   NNcn 8630   ZZcz 8958    || cdvds 11341    gcd cgcd 11483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-sup 6823  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-fz 9684  df-fzo 9813  df-fl 9936  df-mod 9989  df-seqfrec 10112  df-exp 10186  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-dvds 11342  df-gcd 11484
This theorem is referenced by:  qredeu  11624
  Copyright terms: Public domain W3C validator