ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq Unicode version

Theorem qredeq 12618
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 9451 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
21adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3 nncn 9118 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
43adantl 277 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
5 nnap0 9139 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N #  0 )
65adantl 277 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
72, 4, 6divclapd 8937 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
873adant3 1041 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  /  N )  e.  CC )
98adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  /  N )  e.  CC )
10 zcn 9451 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  P  e.  CC )
1110adantr 276 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  P  e.  CC )
12 nncn 9118 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q  e.  CC )
1312adantl 277 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q  e.  CC )
14 nnap0 9139 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q #  0 )
1514adantl 277 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q #  0 )
1611, 13, 15divclapd 8937 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( P  /  Q
)  e.  CC )
17163adant3 1041 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  /  Q )  e.  CC )
1817adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( P  /  Q )  e.  CC )
1933ad2ant2 1043 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  CC )
2019adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  CC )
2153ad2ant2 1043 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N #  0 )
2221adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N #  0 )
239, 18, 20, 22mulcanapd 8808 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  /  N
)  =  ( P  /  Q ) ) )
242, 4, 6divcanap2d 8939 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
25243adant3 1041 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  x.  ( M  /  N ) )  =  M )
2625adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( M  /  N
) )  =  M )
2726eqeq1d 2238 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
M  =  ( N  x.  ( P  /  Q ) ) ) )
2823, 27bitr3d 190 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
2913ad2ant1 1042 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  CC )
3029adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  CC )
31 mulcl 8126 . . . . . . 7  |-  ( ( N  e.  CC  /\  ( P  /  Q
)  e.  CC )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
3219, 17, 31syl2an 289 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
33123ad2ant2 1043 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  CC )
3433adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  CC )
35143ad2ant2 1043 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q #  0 )
3635adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q #  0 )
3730, 32, 34, 36mulcanap2d 8809 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
3820, 18, 34mulassd 8170 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  ( ( P  /  Q )  x.  Q ) ) )
3911, 13, 15divcanap1d 8938 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( ( P  /  Q )  x.  Q
)  =  P )
40393adant3 1041 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  (
( P  /  Q
)  x.  Q )  =  P )
4140adantl 277 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( P  /  Q )  x.  Q )  =  P )
4241oveq2d 6017 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( ( P  /  Q )  x.  Q
) )  =  ( N  x.  P ) )
4338, 42eqtrd 2262 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  P ) )
4443eqeq2d 2241 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
4537, 44bitr3d 190 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  x.  Q
)  =  ( N  x.  P ) ) )
4628, 45bitrd 188 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
47 nnz 9465 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
48473ad2ant2 1043 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
49 simp2 1022 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  NN )
5048, 49anim12i 338 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5150adantr 276 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5248adantr 276 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  ZZ )
53 simpl1 1024 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  ZZ )
54 nnz 9465 . . . . . . . . . . . 12  |-  ( Q  e.  NN  ->  Q  e.  ZZ )
55543ad2ant2 1043 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  ZZ )
5655adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  ZZ )
5752, 53, 563jca 1201 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
5857adantr 276 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
59 simp1 1021 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  ZZ )
60 dvdsmul1 12324 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  N  ||  ( N  x.  P ) )
6148, 59, 60syl2an 289 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  ||  ( N  x.  P )
)
6261adantr 276 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( N  x.  P )
)
63 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( N  x.  P ) )
6462, 63breqtrrd 4111 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( M  x.  Q )
)
65 gcdcom 12494 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6647, 65sylan 283 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6766ancoms 268 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
68673adant3 1041 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N
) )
69 simp3 1023 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
7068, 69eqtrd 2262 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
7170ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  gcd  M )  =  1 )
7264, 71jca 306 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  ||  ( M  x.  Q
)  /\  ( N  gcd  M )  =  1 ) )
73 coprmdvds 12614 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ )  ->  (
( N  ||  ( M  x.  Q )  /\  ( N  gcd  M
)  =  1 )  ->  N  ||  Q
) )
7458, 72, 73sylc 62 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  Q
)
75 dvdsle 12355 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  Q  e.  NN )  ->  ( N  ||  Q  ->  N  <_  Q )
)
7651, 74, 75sylc 62 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  <_  Q
)
77 simp2 1022 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
7855, 77anim12i 338 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
7978ancoms 268 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
8079adantr 276 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
81 simpr1 1027 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  ZZ )
8256, 81, 523jca 1201 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
8382adantr 276 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
84 simp1 1021 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
85 dvdsmul2 12325 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( M  x.  Q ) )
8684, 55, 85syl2an 289 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  ||  ( M  x.  Q )
)
8786adantr 276 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( M  x.  Q )
)
88103ad2ant1 1042 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  CC )
89 mulcom 8128 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  P  e.  CC )  ->  ( N  x.  P
)  =  ( P  x.  N ) )
9019, 88, 89syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9190adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9263, 91eqtrd 2262 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( P  x.  N ) )
9387, 92breqtrd 4109 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( P  x.  N )
)
94 gcdcom 12494 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9554, 94sylan 283 . . . . . . . . . . . . 13  |-  ( ( Q  e.  NN  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9695ancoms 268 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
97963adant3 1041 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  ( P  gcd  Q
) )
98 simp3 1023 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  gcd  Q )  =  1 )
9997, 98eqtrd 2262 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  1 )
10099ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  gcd  P )  =  1 )
10193, 100jca 306 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  ||  ( P  x.  N
)  /\  ( Q  gcd  P )  =  1 ) )
102 coprmdvds 12614 . . . . . . . 8  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  (
( Q  ||  ( P  x.  N )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  N
) )
10383, 101, 102sylc 62 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  N
)
104 dvdsle 12355 . . . . . . 7  |-  ( ( Q  e.  ZZ  /\  N  e.  NN )  ->  ( Q  ||  N  ->  Q  <_  N )
)
10580, 103, 104sylc 62 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  <_  N
)
106 nnre 9117 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
1071063ad2ant2 1043 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  RR )
108107ad2antrr 488 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  e.  RR )
109 nnre 9117 . . . . . . . . 9  |-  ( Q  e.  NN  ->  Q  e.  RR )
1101093ad2ant2 1043 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  RR )
111110ad2antlr 489 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  e.  RR )
112108, 111letri3d 8262 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  <->  ( N  <_  Q  /\  Q  <_  N
) ) )
11376, 105, 112mpbir2and 950 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  =  Q )
114 oveq2 6009 . . . . . . . . . 10  |-  ( N  =  Q  ->  ( M  x.  N )  =  ( M  x.  Q ) )
115114eqeq1d 2238 . . . . . . . . 9  |-  ( N  =  Q  ->  (
( M  x.  N
)  =  ( N  x.  P )  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
116115anbi2d 464 . . . . . . . 8  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  <-> 
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) ) ) )
117 mulcom 8128 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1181, 3, 117syl2an 289 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1191183adant3 1041 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  x.  N )  =  ( N  x.  M ) )
120119adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
121120eqeq1d 2238 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  ( N  x.  M )  =  ( N  x.  P ) ) )
12288adantl 277 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  CC )
12330, 122, 20, 22mulcanapd 8808 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  M )  =  ( N  x.  P
)  <->  M  =  P
) )
124121, 123bitrd 188 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  M  =  P
) )
125124biimpa 296 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  ->  M  =  P )
126116, 125biimtrrdi 164 . . . . . . 7  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  M  =  P ) )
127126com12 30 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  M  =  P ) )
128127ancrd 326 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  ( M  =  P  /\  N  =  Q ) ) )
129113, 128mpd 13 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  =  P  /\  N  =  Q ) )
130129ex 115 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( N  x.  P
)  ->  ( M  =  P  /\  N  =  Q ) ) )
13146, 130sylbid 150 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  ->  ( M  =  P  /\  N  =  Q ) ) )
1321313impia 1224 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    x. cmul 8004    <_ cle 8182   # cap 8728    / cdiv 8819   NNcn 9110   ZZcz 9446    || cdvds 12298    gcd cgcd 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475
This theorem is referenced by:  qredeu  12619
  Copyright terms: Public domain W3C validator