ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo4 Unicode version

Theorem dffo4 5707
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dffo4
StepHypRef Expression
1 dffo2 5481 . . 3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 simpl 109 . . . 4  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  F : A --> B )
3 vex 2763 . . . . . . . . . 10  |-  y  e. 
_V
43elrn 4906 . . . . . . . . 9  |-  ( y  e.  ran  F  <->  E. x  x F y )
5 eleq2 2257 . . . . . . . . 9  |-  ( ran 
F  =  B  -> 
( y  e.  ran  F  <-> 
y  e.  B ) )
64, 5bitr3id 194 . . . . . . . 8  |-  ( ran 
F  =  B  -> 
( E. x  x F y  <->  y  e.  B ) )
76biimpar 297 . . . . . . 7  |-  ( ( ran  F  =  B  /\  y  e.  B
)  ->  E. x  x F y )
87adantll 476 . . . . . 6  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  E. x  x F y )
9 ffn 5404 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
10 fnbr 5357 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
1110ex 115 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
129, 11syl 14 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( x F y  ->  x  e.  A
) )
1312ancrd 326 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x F y  ->  ( x  e.  A  /\  x F y ) ) )
1413eximdv 1891 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x
( x  e.  A  /\  x F y ) ) )
15 df-rex 2478 . . . . . . . 8  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
1614, 15imbitrrdi 162 . . . . . . 7  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x  e.  A  x F
y ) )
1716ad2antrr 488 . . . . . 6  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  ( E. x  x F
y  ->  E. x  e.  A  x F
y ) )
188, 17mpd 13 . . . . 5  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  E. x  e.  A  x F
y )
1918ralrimiva 2567 . . . 4  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  A. y  e.  B  E. x  e.  A  x F y )
202, 19jca 306 . . 3  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  ( F : A
--> B  /\  A. y  e.  B  E. x  e.  A  x F
y ) )
211, 20sylbi 121 . 2  |-  ( F : A -onto-> B  -> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
22 fnbrfvb 5598 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
2322biimprd 158 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x F y  ->  ( F `  x )  =  y ) )
24 eqcom 2195 . . . . . . . 8  |-  ( ( F `  x )  =  y  <->  y  =  ( F `  x ) )
2523, 24imbitrdi 161 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x F y  ->  y  =  ( F `  x ) ) )
269, 25sylan 283 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( x F y  ->  y  =  ( F `  x ) ) )
2726reximdva 2596 . . . . 5  |-  ( F : A --> B  -> 
( E. x  e.  A  x F y  ->  E. x  e.  A  y  =  ( F `  x ) ) )
2827ralimdv 2562 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E. x  e.  A  x F y  ->  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
2928imdistani 445 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  -> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
30 dffo3 5706 . . 3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
3129, 30sylibr 134 . 2  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  ->  F : A -onto-> B )
3221, 31impbii 126 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030   ran crn 4661    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263
This theorem is referenced by:  dffo5  5708
  Copyright terms: Public domain W3C validator