ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo4 Unicode version

Theorem dffo4 5633
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo4  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem dffo4
StepHypRef Expression
1 dffo2 5414 . . 3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 simpl 108 . . . 4  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  F : A --> B )
3 vex 2729 . . . . . . . . . 10  |-  y  e. 
_V
43elrn 4847 . . . . . . . . 9  |-  ( y  e.  ran  F  <->  E. x  x F y )
5 eleq2 2230 . . . . . . . . 9  |-  ( ran 
F  =  B  -> 
( y  e.  ran  F  <-> 
y  e.  B ) )
64, 5bitr3id 193 . . . . . . . 8  |-  ( ran 
F  =  B  -> 
( E. x  x F y  <->  y  e.  B ) )
76biimpar 295 . . . . . . 7  |-  ( ( ran  F  =  B  /\  y  e.  B
)  ->  E. x  x F y )
87adantll 468 . . . . . 6  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  E. x  x F y )
9 ffn 5337 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
10 fnbr 5290 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
1110ex 114 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
129, 11syl 14 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( x F y  ->  x  e.  A
) )
1312ancrd 324 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x F y  ->  ( x  e.  A  /\  x F y ) ) )
1413eximdv 1868 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x
( x  e.  A  /\  x F y ) ) )
15 df-rex 2450 . . . . . . . 8  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
1614, 15syl6ibr 161 . . . . . . 7  |-  ( F : A --> B  -> 
( E. x  x F y  ->  E. x  e.  A  x F
y ) )
1716ad2antrr 480 . . . . . 6  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  ( E. x  x F
y  ->  E. x  e.  A  x F
y ) )
188, 17mpd 13 . . . . 5  |-  ( ( ( F : A --> B  /\  ran  F  =  B )  /\  y  e.  B )  ->  E. x  e.  A  x F
y )
1918ralrimiva 2539 . . . 4  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  A. y  e.  B  E. x  e.  A  x F y )
202, 19jca 304 . . 3  |-  ( ( F : A --> B  /\  ran  F  =  B )  ->  ( F : A
--> B  /\  A. y  e.  B  E. x  e.  A  x F
y ) )
211, 20sylbi 120 . 2  |-  ( F : A -onto-> B  -> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
22 fnbrfvb 5527 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
2322biimprd 157 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x F y  ->  ( F `  x )  =  y ) )
24 eqcom 2167 . . . . . . . 8  |-  ( ( F `  x )  =  y  <->  y  =  ( F `  x ) )
2523, 24syl6ib 160 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( x F y  ->  y  =  ( F `  x ) ) )
269, 25sylan 281 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( x F y  ->  y  =  ( F `  x ) ) )
2726reximdva 2568 . . . . 5  |-  ( F : A --> B  -> 
( E. x  e.  A  x F y  ->  E. x  e.  A  y  =  ( F `  x ) ) )
2827ralimdv 2534 . . . 4  |-  ( F : A --> B  -> 
( A. y  e.  B  E. x  e.  A  x F y  ->  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
2928imdistani 442 . . 3  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  -> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
30 dffo3 5632 . . 3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
3129, 30sylibr 133 . 2  |-  ( ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y )  ->  F : A -onto-> B )
3221, 31impbii 125 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   ran crn 4605    Fn wfn 5183   -->wf 5184   -onto->wfo 5186   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  dffo5  5634
  Copyright terms: Public domain W3C validator