Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffo4 | Unicode version |
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
Ref | Expression |
---|---|
dffo4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 5395 | . . 3 | |
2 | simpl 108 | . . . 4 | |
3 | vex 2715 | . . . . . . . . . 10 | |
4 | 3 | elrn 4828 | . . . . . . . . 9 |
5 | eleq2 2221 | . . . . . . . . 9 | |
6 | 4, 5 | bitr3id 193 | . . . . . . . 8 |
7 | 6 | biimpar 295 | . . . . . . 7 |
8 | 7 | adantll 468 | . . . . . 6 |
9 | ffn 5318 | . . . . . . . . . . 11 | |
10 | fnbr 5271 | . . . . . . . . . . . 12 | |
11 | 10 | ex 114 | . . . . . . . . . . 11 |
12 | 9, 11 | syl 14 | . . . . . . . . . 10 |
13 | 12 | ancrd 324 | . . . . . . . . 9 |
14 | 13 | eximdv 1860 | . . . . . . . 8 |
15 | df-rex 2441 | . . . . . . . 8 | |
16 | 14, 15 | syl6ibr 161 | . . . . . . 7 |
17 | 16 | ad2antrr 480 | . . . . . 6 |
18 | 8, 17 | mpd 13 | . . . . 5 |
19 | 18 | ralrimiva 2530 | . . . 4 |
20 | 2, 19 | jca 304 | . . 3 |
21 | 1, 20 | sylbi 120 | . 2 |
22 | fnbrfvb 5508 | . . . . . . . . 9 | |
23 | 22 | biimprd 157 | . . . . . . . 8 |
24 | eqcom 2159 | . . . . . . . 8 | |
25 | 23, 24 | syl6ib 160 | . . . . . . 7 |
26 | 9, 25 | sylan 281 | . . . . . 6 |
27 | 26 | reximdva 2559 | . . . . 5 |
28 | 27 | ralimdv 2525 | . . . 4 |
29 | 28 | imdistani 442 | . . 3 |
30 | dffo3 5613 | . . 3 | |
31 | 29, 30 | sylibr 133 | . 2 |
32 | 21, 31 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 wral 2435 wrex 2436 class class class wbr 3965 crn 4586 wfn 5164 wf 5165 wfo 5167 cfv 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fo 5175 df-fv 5177 |
This theorem is referenced by: dffo5 5615 |
Copyright terms: Public domain | W3C validator |