| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffo4 | Unicode version | ||
| Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
| Ref | Expression |
|---|---|
| dffo4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 5501 |
. . 3
| |
| 2 | simpl 109 |
. . . 4
| |
| 3 | vex 2774 |
. . . . . . . . . 10
| |
| 4 | 3 | elrn 4920 |
. . . . . . . . 9
|
| 5 | eleq2 2268 |
. . . . . . . . 9
| |
| 6 | 4, 5 | bitr3id 194 |
. . . . . . . 8
|
| 7 | 6 | biimpar 297 |
. . . . . . 7
|
| 8 | 7 | adantll 476 |
. . . . . 6
|
| 9 | ffn 5424 |
. . . . . . . . . . 11
| |
| 10 | fnbr 5377 |
. . . . . . . . . . . 12
| |
| 11 | 10 | ex 115 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | syl 14 |
. . . . . . . . . 10
|
| 13 | 12 | ancrd 326 |
. . . . . . . . 9
|
| 14 | 13 | eximdv 1902 |
. . . . . . . 8
|
| 15 | df-rex 2489 |
. . . . . . . 8
| |
| 16 | 14, 15 | imbitrrdi 162 |
. . . . . . 7
|
| 17 | 16 | ad2antrr 488 |
. . . . . 6
|
| 18 | 8, 17 | mpd 13 |
. . . . 5
|
| 19 | 18 | ralrimiva 2578 |
. . . 4
|
| 20 | 2, 19 | jca 306 |
. . 3
|
| 21 | 1, 20 | sylbi 121 |
. 2
|
| 22 | fnbrfvb 5618 |
. . . . . . . . 9
| |
| 23 | 22 | biimprd 158 |
. . . . . . . 8
|
| 24 | eqcom 2206 |
. . . . . . . 8
| |
| 25 | 23, 24 | imbitrdi 161 |
. . . . . . 7
|
| 26 | 9, 25 | sylan 283 |
. . . . . 6
|
| 27 | 26 | reximdva 2607 |
. . . . 5
|
| 28 | 27 | ralimdv 2573 |
. . . 4
|
| 29 | 28 | imdistani 445 |
. . 3
|
| 30 | dffo3 5726 |
. . 3
| |
| 31 | 29, 30 | sylibr 134 |
. 2
|
| 32 | 21, 31 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fo 5276 df-fv 5278 |
| This theorem is referenced by: dffo5 5728 |
| Copyright terms: Public domain | W3C validator |