Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffo4 | Unicode version |
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
Ref | Expression |
---|---|
dffo4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 5424 | . . 3 | |
2 | simpl 108 | . . . 4 | |
3 | vex 2733 | . . . . . . . . . 10 | |
4 | 3 | elrn 4854 | . . . . . . . . 9 |
5 | eleq2 2234 | . . . . . . . . 9 | |
6 | 4, 5 | bitr3id 193 | . . . . . . . 8 |
7 | 6 | biimpar 295 | . . . . . . 7 |
8 | 7 | adantll 473 | . . . . . 6 |
9 | ffn 5347 | . . . . . . . . . . 11 | |
10 | fnbr 5300 | . . . . . . . . . . . 12 | |
11 | 10 | ex 114 | . . . . . . . . . . 11 |
12 | 9, 11 | syl 14 | . . . . . . . . . 10 |
13 | 12 | ancrd 324 | . . . . . . . . 9 |
14 | 13 | eximdv 1873 | . . . . . . . 8 |
15 | df-rex 2454 | . . . . . . . 8 | |
16 | 14, 15 | syl6ibr 161 | . . . . . . 7 |
17 | 16 | ad2antrr 485 | . . . . . 6 |
18 | 8, 17 | mpd 13 | . . . . 5 |
19 | 18 | ralrimiva 2543 | . . . 4 |
20 | 2, 19 | jca 304 | . . 3 |
21 | 1, 20 | sylbi 120 | . 2 |
22 | fnbrfvb 5537 | . . . . . . . . 9 | |
23 | 22 | biimprd 157 | . . . . . . . 8 |
24 | eqcom 2172 | . . . . . . . 8 | |
25 | 23, 24 | syl6ib 160 | . . . . . . 7 |
26 | 9, 25 | sylan 281 | . . . . . 6 |
27 | 26 | reximdva 2572 | . . . . 5 |
28 | 27 | ralimdv 2538 | . . . 4 |
29 | 28 | imdistani 443 | . . 3 |
30 | dffo3 5643 | . . 3 | |
31 | 29, 30 | sylibr 133 | . 2 |
32 | 21, 31 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 class class class wbr 3989 crn 4612 wfn 5193 wf 5194 wfo 5196 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: dffo5 5645 |
Copyright terms: Public domain | W3C validator |