| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > prel12 | Unicode version | ||
| Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) | 
| Ref | Expression | 
|---|---|
| preq12b.1 | 
 | 
| preq12b.2 | 
 | 
| preq12b.3 | 
 | 
| preq12b.4 | 
 | 
| Ref | Expression | 
|---|---|
| prel12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preq12b.1 | 
. . . . 5
 | |
| 2 | 1 | prid1 3728 | 
. . . 4
 | 
| 3 | eleq2 2260 | 
. . . 4
 | |
| 4 | 2, 3 | mpbii 148 | 
. . 3
 | 
| 5 | preq12b.2 | 
. . . . 5
 | |
| 6 | 5 | prid2 3729 | 
. . . 4
 | 
| 7 | eleq2 2260 | 
. . . 4
 | |
| 8 | 6, 7 | mpbii 148 | 
. . 3
 | 
| 9 | 4, 8 | jca 306 | 
. 2
 | 
| 10 | 1 | elpr 3643 | 
. . . 4
 | 
| 11 | eqeq2 2206 | 
. . . . . . . . . . . 12
 | |
| 12 | 11 | notbid 668 | 
. . . . . . . . . . 11
 | 
| 13 | orel2 727 | 
. . . . . . . . . . 11
 | |
| 14 | 12, 13 | biimtrdi 163 | 
. . . . . . . . . 10
 | 
| 15 | 14 | com3l 81 | 
. . . . . . . . 9
 | 
| 16 | 15 | imp 124 | 
. . . . . . . 8
 | 
| 17 | 16 | ancrd 326 | 
. . . . . . 7
 | 
| 18 | eqeq2 2206 | 
. . . . . . . . . . . 12
 | |
| 19 | 18 | notbid 668 | 
. . . . . . . . . . 11
 | 
| 20 | orel1 726 | 
. . . . . . . . . . 11
 | |
| 21 | 19, 20 | biimtrdi 163 | 
. . . . . . . . . 10
 | 
| 22 | 21 | com3l 81 | 
. . . . . . . . 9
 | 
| 23 | 22 | imp 124 | 
. . . . . . . 8
 | 
| 24 | 23 | ancrd 326 | 
. . . . . . 7
 | 
| 25 | 17, 24 | orim12d 787 | 
. . . . . 6
 | 
| 26 | 5 | elpr 3643 | 
. . . . . . 7
 | 
| 27 | orcom 729 | 
. . . . . . 7
 | |
| 28 | 26, 27 | bitri 184 | 
. . . . . 6
 | 
| 29 | preq12b.3 | 
. . . . . . 7
 | |
| 30 | preq12b.4 | 
. . . . . . 7
 | |
| 31 | 1, 5, 29, 30 | preq12b 3800 | 
. . . . . 6
 | 
| 32 | 25, 28, 31 | 3imtr4g 205 | 
. . . . 5
 | 
| 33 | 32 | ex 115 | 
. . . 4
 | 
| 34 | 10, 33 | biimtrid 152 | 
. . 3
 | 
| 35 | 34 | impd 254 | 
. 2
 | 
| 36 | 9, 35 | impbid2 143 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |