| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prel12 | Unicode version | ||
| Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| preq12b.1 |
|
| preq12b.2 |
|
| preq12b.3 |
|
| preq12b.4 |
|
| Ref | Expression |
|---|---|
| prel12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12b.1 |
. . . . 5
| |
| 2 | 1 | prid1 3738 |
. . . 4
|
| 3 | eleq2 2268 |
. . . 4
| |
| 4 | 2, 3 | mpbii 148 |
. . 3
|
| 5 | preq12b.2 |
. . . . 5
| |
| 6 | 5 | prid2 3739 |
. . . 4
|
| 7 | eleq2 2268 |
. . . 4
| |
| 8 | 6, 7 | mpbii 148 |
. . 3
|
| 9 | 4, 8 | jca 306 |
. 2
|
| 10 | 1 | elpr 3653 |
. . . 4
|
| 11 | eqeq2 2214 |
. . . . . . . . . . . 12
| |
| 12 | 11 | notbid 668 |
. . . . . . . . . . 11
|
| 13 | orel2 727 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | biimtrdi 163 |
. . . . . . . . . 10
|
| 15 | 14 | com3l 81 |
. . . . . . . . 9
|
| 16 | 15 | imp 124 |
. . . . . . . 8
|
| 17 | 16 | ancrd 326 |
. . . . . . 7
|
| 18 | eqeq2 2214 |
. . . . . . . . . . . 12
| |
| 19 | 18 | notbid 668 |
. . . . . . . . . . 11
|
| 20 | orel1 726 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | biimtrdi 163 |
. . . . . . . . . 10
|
| 22 | 21 | com3l 81 |
. . . . . . . . 9
|
| 23 | 22 | imp 124 |
. . . . . . . 8
|
| 24 | 23 | ancrd 326 |
. . . . . . 7
|
| 25 | 17, 24 | orim12d 787 |
. . . . . 6
|
| 26 | 5 | elpr 3653 |
. . . . . . 7
|
| 27 | orcom 729 |
. . . . . . 7
| |
| 28 | 26, 27 | bitri 184 |
. . . . . 6
|
| 29 | preq12b.3 |
. . . . . . 7
| |
| 30 | preq12b.4 |
. . . . . . 7
| |
| 31 | 1, 5, 29, 30 | preq12b 3810 |
. . . . . 6
|
| 32 | 25, 28, 31 | 3imtr4g 205 |
. . . . 5
|
| 33 | 32 | ex 115 |
. . . 4
|
| 34 | 10, 33 | biimtrid 152 |
. . 3
|
| 35 | 34 | impd 254 |
. 2
|
| 36 | 9, 35 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |