ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdvdsfz Unicode version

Theorem prmdvdsfz 12020
Description: Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.)
Assertion
Ref Expression
prmdvdsfz  |-  ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  ->  E. p  e.  Prime  ( p  <_  N  /\  p  ||  I ) )
Distinct variable groups:    I, p    N, p

Proof of Theorem prmdvdsfz
StepHypRef Expression
1 elfzuz 9925 . . . 4  |-  ( I  e.  ( 2 ... N )  ->  I  e.  ( ZZ>= `  2 )
)
21adantl 275 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  ->  I  e.  (
ZZ>= `  2 ) )
3 exprmfct 12019 . . 3  |-  ( I  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  I
)
42, 3syl 14 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  ->  E. p  e.  Prime  p 
||  I )
5 prmz 11992 . . . . . 6  |-  ( p  e.  Prime  ->  p  e.  ZZ )
6 eluz2nn 9478 . . . . . . . 8  |-  ( I  e.  ( ZZ>= `  2
)  ->  I  e.  NN )
71, 6syl 14 . . . . . . 7  |-  ( I  e.  ( 2 ... N )  ->  I  e.  NN )
87adantl 275 . . . . . 6  |-  ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  ->  I  e.  NN )
9 dvdsle 11740 . . . . . 6  |-  ( ( p  e.  ZZ  /\  I  e.  NN )  ->  ( p  ||  I  ->  p  <_  I )
)
105, 8, 9syl2anr 288 . . . . 5  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  ( p  ||  I  ->  p  <_  I
) )
11 elfzle2 9931 . . . . . . 7  |-  ( I  e.  ( 2 ... N )  ->  I  <_  N )
1211ad2antlr 481 . . . . . 6  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  I  <_  N
)
135zred 9287 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  RR )
1413adantl 275 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  p  e.  RR )
15 elfzelz 9929 . . . . . . . . 9  |-  ( I  e.  ( 2 ... N )  ->  I  e.  ZZ )
1615zred 9287 . . . . . . . 8  |-  ( I  e.  ( 2 ... N )  ->  I  e.  RR )
1716ad2antlr 481 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  I  e.  RR )
18 nnre 8841 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
1918ad2antrr 480 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  N  e.  RR )
20 letr 7961 . . . . . . 7  |-  ( ( p  e.  RR  /\  I  e.  RR  /\  N  e.  RR )  ->  (
( p  <_  I  /\  I  <_  N )  ->  p  <_  N
) )
2114, 17, 19, 20syl3anc 1220 . . . . . 6  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  ( ( p  <_  I  /\  I  <_  N )  ->  p  <_  N ) )
2212, 21mpan2d 425 . . . . 5  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  ( p  <_  I  ->  p  <_  N
) )
2310, 22syld 45 . . . 4  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  ( p  ||  I  ->  p  <_  N
) )
2423ancrd 324 . . 3  |-  ( ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  /\  p  e.  Prime )  ->  ( p  ||  I  ->  ( p  <_  N  /\  p  ||  I
) ) )
2524reximdva 2559 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  ->  ( E. p  e.  Prime  p  ||  I  ->  E. p  e.  Prime  ( p  <_  N  /\  p  ||  I ) ) )
264, 25mpd 13 1  |-  ( ( N  e.  NN  /\  I  e.  ( 2 ... N ) )  ->  E. p  e.  Prime  ( p  <_  N  /\  p  ||  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   E.wrex 2436   class class class wbr 3966   ` cfv 5171  (class class class)co 5825   RRcr 7732    <_ cle 7914   NNcn 8834   2c2 8885   ZZcz 9168   ZZ>=cuz 9440   ...cfz 9913    || cdvds 11687   Primecprime 11988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-1o 6364  df-2o 6365  df-er 6481  df-en 6687  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-fz 9914  df-fzo 10046  df-fl 10173  df-mod 10226  df-seqfrec 10349  df-exp 10423  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-dvds 11688  df-prm 11989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator