| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrnres | Unicode version | ||
| Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.) |
| Ref | Expression |
|---|---|
| ssrnres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3385 |
. . . . 5
| |
| 2 | rnss 4897 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | rnxpss 5102 |
. . . 4
| |
| 5 | 3, 4 | sstri 3193 |
. . 3
|
| 6 | eqss 3199 |
. . 3
| |
| 7 | 5, 6 | mpbiran 942 |
. 2
|
| 8 | ssid 3204 |
. . . . . . . 8
| |
| 9 | ssv 3206 |
. . . . . . . 8
| |
| 10 | xpss12 4771 |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | mp2an 426 |
. . . . . . 7
|
| 12 | sslin 3390 |
. . . . . . 7
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
|
| 14 | df-res 4676 |
. . . . . 6
| |
| 15 | 13, 14 | sseqtrri 3219 |
. . . . 5
|
| 16 | rnss 4897 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | sstr 3192 |
. . . 4
| |
| 19 | 17, 18 | mpan2 425 |
. . 3
|
| 20 | ssel 3178 |
. . . . . . 7
| |
| 21 | vex 2766 |
. . . . . . . 8
| |
| 22 | 21 | elrn2 4909 |
. . . . . . 7
|
| 23 | 20, 22 | imbitrdi 161 |
. . . . . 6
|
| 24 | 23 | ancrd 326 |
. . . . 5
|
| 25 | 21 | elrn2 4909 |
. . . . . 6
|
| 26 | elin 3347 |
. . . . . . . 8
| |
| 27 | opelxp 4694 |
. . . . . . . . 9
| |
| 28 | 27 | anbi2i 457 |
. . . . . . . 8
|
| 29 | 21 | opelres 4952 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1i 458 |
. . . . . . . . 9
|
| 31 | anass 401 |
. . . . . . . . 9
| |
| 32 | 30, 31 | bitr2i 185 |
. . . . . . . 8
|
| 33 | 26, 28, 32 | 3bitri 206 |
. . . . . . 7
|
| 34 | 33 | exbii 1619 |
. . . . . 6
|
| 35 | 19.41v 1917 |
. . . . . 6
| |
| 36 | 25, 34, 35 | 3bitri 206 |
. . . . 5
|
| 37 | 24, 36 | imbitrrdi 162 |
. . . 4
|
| 38 | 37 | ssrdv 3190 |
. . 3
|
| 39 | 19, 38 | impbii 126 |
. 2
|
| 40 | 7, 39 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 |
| This theorem is referenced by: rninxp 5114 |
| Copyright terms: Public domain | W3C validator |