| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrnres | Unicode version | ||
| Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.) |
| Ref | Expression |
|---|---|
| ssrnres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3402 |
. . . . 5
| |
| 2 | rnss 4927 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | rnxpss 5133 |
. . . 4
| |
| 5 | 3, 4 | sstri 3210 |
. . 3
|
| 6 | eqss 3216 |
. . 3
| |
| 7 | 5, 6 | mpbiran 943 |
. 2
|
| 8 | ssid 3221 |
. . . . . . . 8
| |
| 9 | ssv 3223 |
. . . . . . . 8
| |
| 10 | xpss12 4800 |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | mp2an 426 |
. . . . . . 7
|
| 12 | sslin 3407 |
. . . . . . 7
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
|
| 14 | df-res 4705 |
. . . . . 6
| |
| 15 | 13, 14 | sseqtrri 3236 |
. . . . 5
|
| 16 | rnss 4927 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | sstr 3209 |
. . . 4
| |
| 19 | 17, 18 | mpan2 425 |
. . 3
|
| 20 | ssel 3195 |
. . . . . . 7
| |
| 21 | vex 2779 |
. . . . . . . 8
| |
| 22 | 21 | elrn2 4939 |
. . . . . . 7
|
| 23 | 20, 22 | imbitrdi 161 |
. . . . . 6
|
| 24 | 23 | ancrd 326 |
. . . . 5
|
| 25 | 21 | elrn2 4939 |
. . . . . 6
|
| 26 | elin 3364 |
. . . . . . . 8
| |
| 27 | opelxp 4723 |
. . . . . . . . 9
| |
| 28 | 27 | anbi2i 457 |
. . . . . . . 8
|
| 29 | 21 | opelres 4983 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1i 458 |
. . . . . . . . 9
|
| 31 | anass 401 |
. . . . . . . . 9
| |
| 32 | 30, 31 | bitr2i 185 |
. . . . . . . 8
|
| 33 | 26, 28, 32 | 3bitri 206 |
. . . . . . 7
|
| 34 | 33 | exbii 1629 |
. . . . . 6
|
| 35 | 19.41v 1927 |
. . . . . 6
| |
| 36 | 25, 34, 35 | 3bitri 206 |
. . . . 5
|
| 37 | 24, 36 | imbitrrdi 162 |
. . . 4
|
| 38 | 37 | ssrdv 3207 |
. . 3
|
| 39 | 19, 38 | impbii 126 |
. 2
|
| 40 | 7, 39 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 |
| This theorem is referenced by: rninxp 5145 |
| Copyright terms: Public domain | W3C validator |