| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrnres | Unicode version | ||
| Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.) |
| Ref | Expression |
|---|---|
| ssrnres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3394 |
. . . . 5
| |
| 2 | rnss 4908 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | rnxpss 5114 |
. . . 4
| |
| 5 | 3, 4 | sstri 3202 |
. . 3
|
| 6 | eqss 3208 |
. . 3
| |
| 7 | 5, 6 | mpbiran 943 |
. 2
|
| 8 | ssid 3213 |
. . . . . . . 8
| |
| 9 | ssv 3215 |
. . . . . . . 8
| |
| 10 | xpss12 4782 |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | mp2an 426 |
. . . . . . 7
|
| 12 | sslin 3399 |
. . . . . . 7
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
|
| 14 | df-res 4687 |
. . . . . 6
| |
| 15 | 13, 14 | sseqtrri 3228 |
. . . . 5
|
| 16 | rnss 4908 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | sstr 3201 |
. . . 4
| |
| 19 | 17, 18 | mpan2 425 |
. . 3
|
| 20 | ssel 3187 |
. . . . . . 7
| |
| 21 | vex 2775 |
. . . . . . . 8
| |
| 22 | 21 | elrn2 4920 |
. . . . . . 7
|
| 23 | 20, 22 | imbitrdi 161 |
. . . . . 6
|
| 24 | 23 | ancrd 326 |
. . . . 5
|
| 25 | 21 | elrn2 4920 |
. . . . . 6
|
| 26 | elin 3356 |
. . . . . . . 8
| |
| 27 | opelxp 4705 |
. . . . . . . . 9
| |
| 28 | 27 | anbi2i 457 |
. . . . . . . 8
|
| 29 | 21 | opelres 4964 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1i 458 |
. . . . . . . . 9
|
| 31 | anass 401 |
. . . . . . . . 9
| |
| 32 | 30, 31 | bitr2i 185 |
. . . . . . . 8
|
| 33 | 26, 28, 32 | 3bitri 206 |
. . . . . . 7
|
| 34 | 33 | exbii 1628 |
. . . . . 6
|
| 35 | 19.41v 1926 |
. . . . . 6
| |
| 36 | 25, 34, 35 | 3bitri 206 |
. . . . 5
|
| 37 | 24, 36 | imbitrrdi 162 |
. . . 4
|
| 38 | 37 | ssrdv 3199 |
. . 3
|
| 39 | 19, 38 | impbii 126 |
. 2
|
| 40 | 7, 39 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 |
| This theorem is referenced by: rninxp 5126 |
| Copyright terms: Public domain | W3C validator |