ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrnres Unicode version

Theorem ssrnres 5108
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )

Proof of Theorem ssrnres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3380 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( A  X.  B
)
2 rnss 4892 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( A  X.  B )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( A  X.  B ) )
31, 2ax-mp 5 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( A  X.  B
)
4 rnxpss 5097 . . . 4  |-  ran  ( A  X.  B )  C_  B
53, 4sstri 3188 . . 3  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  B
6 eqss 3194 . . 3  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  ( ran  ( C  i^i  ( A  X.  B ) ) 
C_  B  /\  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) ) )
75, 6mpbiran 942 . 2  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  B  C_  ran  ( C  i^i  ( A  X.  B ) ) )
8 ssid 3199 . . . . . . . 8  |-  A  C_  A
9 ssv 3201 . . . . . . . 8  |-  B  C_  _V
10 xpss12 4766 . . . . . . . 8  |-  ( ( A  C_  A  /\  B  C_  _V )  -> 
( A  X.  B
)  C_  ( A  X.  _V ) )
118, 9, 10mp2an 426 . . . . . . 7  |-  ( A  X.  B )  C_  ( A  X.  _V )
12 sslin 3385 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( A  X.  _V )  ->  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) )
14 df-res 4671 . . . . . 6  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
1513, 14sseqtrri 3214 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  |`  A )
16 rnss 4892 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( C  |`  A )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )
1715, 16ax-mp 5 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( C  |`  A )
18 sstr 3187 . . . 4  |-  ( ( B  C_  ran  ( C  i^i  ( A  X.  B ) )  /\  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )  ->  B  C_  ran  ( C  |`  A ) )
1917, 18mpan2 425 . . 3  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  ->  B  C_ 
ran  ( C  |`  A ) )
20 ssel 3173 . . . . . . 7  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  |`  A ) ) )
21 vex 2763 . . . . . . . 8  |-  y  e. 
_V
2221elrn2 4904 . . . . . . 7  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x <. x ,  y >.  e.  ( C  |`  A ) )
2320, 22imbitrdi 161 . . . . . 6  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  ->  E. x <. x ,  y
>.  e.  ( C  |`  A ) ) )
2423ancrd 326 . . . . 5  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) ) )
2521elrn2 4904 . . . . . 6  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  E. x <. x ,  y >.  e.  ( C  i^i  ( A  X.  B ) ) )
26 elin 3342 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) ) )
27 opelxp 4689 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2827anbi2i 457 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
2921opelres 4947 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( C  |`  A )  <-> 
( <. x ,  y
>.  e.  C  /\  x  e.  A ) )
3029anbi1i 458 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( ( <.
x ,  y >.  e.  C  /\  x  e.  A )  /\  y  e.  B ) )
31 anass 401 . . . . . . . . 9  |-  ( ( ( <. x ,  y
>.  e.  C  /\  x  e.  A )  /\  y  e.  B )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
3230, 31bitr2i 185 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3326, 28, 323bitri 206 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3433exbii 1616 . . . . . 6  |-  ( E. x <. x ,  y
>.  e.  ( C  i^i  ( A  X.  B
) )  <->  E. x
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
35 19.41v 1914 . . . . . 6  |-  ( E. x ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3625, 34, 353bitri 206 . . . . 5  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  ( E. x <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3724, 36imbitrrdi 162 . . . 4  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  i^i  ( A  X.  B ) ) ) )
3837ssrdv 3185 . . 3  |-  ( B 
C_  ran  ( C  |`  A )  ->  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) )
3919, 38impbii 126 . 2  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  <->  B  C_  ran  ( C  |`  A ) )
407, 39bitr2i 185 1  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153   <.cop 3621    X. cxp 4657   ran crn 4660    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671
This theorem is referenced by:  rninxp  5109
  Copyright terms: Public domain W3C validator