Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrnres | Unicode version |
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.) |
Ref | Expression |
---|---|
ssrnres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3343 | . . . . 5 | |
2 | rnss 4834 | . . . . 5 | |
3 | 1, 2 | ax-mp 5 | . . . 4 |
4 | rnxpss 5035 | . . . 4 | |
5 | 3, 4 | sstri 3151 | . . 3 |
6 | eqss 3157 | . . 3 | |
7 | 5, 6 | mpbiran 930 | . 2 |
8 | ssid 3162 | . . . . . . . 8 | |
9 | ssv 3164 | . . . . . . . 8 | |
10 | xpss12 4711 | . . . . . . . 8 | |
11 | 8, 9, 10 | mp2an 423 | . . . . . . 7 |
12 | sslin 3348 | . . . . . . 7 | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 |
14 | df-res 4616 | . . . . . 6 | |
15 | 13, 14 | sseqtrri 3177 | . . . . 5 |
16 | rnss 4834 | . . . . 5 | |
17 | 15, 16 | ax-mp 5 | . . . 4 |
18 | sstr 3150 | . . . 4 | |
19 | 17, 18 | mpan2 422 | . . 3 |
20 | ssel 3136 | . . . . . . 7 | |
21 | vex 2729 | . . . . . . . 8 | |
22 | 21 | elrn2 4846 | . . . . . . 7 |
23 | 20, 22 | syl6ib 160 | . . . . . 6 |
24 | 23 | ancrd 324 | . . . . 5 |
25 | 21 | elrn2 4846 | . . . . . 6 |
26 | elin 3305 | . . . . . . . 8 | |
27 | opelxp 4634 | . . . . . . . . 9 | |
28 | 27 | anbi2i 453 | . . . . . . . 8 |
29 | 21 | opelres 4889 | . . . . . . . . . 10 |
30 | 29 | anbi1i 454 | . . . . . . . . 9 |
31 | anass 399 | . . . . . . . . 9 | |
32 | 30, 31 | bitr2i 184 | . . . . . . . 8 |
33 | 26, 28, 32 | 3bitri 205 | . . . . . . 7 |
34 | 33 | exbii 1593 | . . . . . 6 |
35 | 19.41v 1890 | . . . . . 6 | |
36 | 25, 34, 35 | 3bitri 205 | . . . . 5 |
37 | 24, 36 | syl6ibr 161 | . . . 4 |
38 | 37 | ssrdv 3148 | . . 3 |
39 | 19, 38 | impbii 125 | . 2 |
40 | 7, 39 | bitr2i 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cin 3115 wss 3116 cop 3579 cxp 4602 crn 4605 cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 |
This theorem is referenced by: rninxp 5047 |
Copyright terms: Public domain | W3C validator |