ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzospliti Unicode version

Theorem fzospliti 9843
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )

Proof of Theorem fzospliti
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
2 elfzoelz 9814 . . . . . 6  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
32adantr 272 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
4 zlelttric 9000 . . . . 5  |-  ( ( D  e.  ZZ  /\  A  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
51, 3, 4syl2anc 406 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
65orcomd 701 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  \/  D  <_  A ) )
7 elfzole1 9822 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  B  <_  A )
87adantr 272 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  <_  A )
98a1d 22 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  B  <_  A ) )
109ancrd 322 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  ( B  <_  A  /\  A  <  D ) ) )
11 elfzolt2 9823 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  A  <  C )
1211adantr 272 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  <  C )
1312a1d 22 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  A  <  C ) )
1413ancld 321 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  ( D  <_  A  /\  A  <  C ) ) )
1510, 14orim12d 758 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  <  D  \/  D  <_  A )  ->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
166, 15mpd 13 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C
) ) )
17 elfzoel1 9812 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
1817adantr 272 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
19 elfzo 9816 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
203, 18, 1, 19syl3anc 1199 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
21 elfzoel2 9813 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
2221adantr 272 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
23 elfzo 9816 . . . 4  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
243, 1, 22, 23syl3anc 1199 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
2520, 24orbi12d 765 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) )  <->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
2616, 25mpbird 166 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    e. wcel 1463   class class class wbr 3895  (class class class)co 5728    < clt 7721    <_ cle 7722   ZZcz 8955  ..^cfzo 9809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7633  ax-resscn 7634  ax-1cn 7635  ax-1re 7636  ax-icn 7637  ax-addcl 7638  ax-addrcl 7639  ax-mulcl 7640  ax-addcom 7642  ax-addass 7644  ax-distr 7646  ax-i2m1 7647  ax-0lt1 7648  ax-0id 7650  ax-rnegex 7651  ax-cnre 7653  ax-pre-ltirr 7654  ax-pre-ltwlin 7655  ax-pre-lttrn 7656  ax-pre-ltadd 7658
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7723  df-mnf 7724  df-xr 7725  df-ltxr 7726  df-le 7727  df-sub 7855  df-neg 7856  df-inn 8628  df-n0 8879  df-z 8956  df-uz 9226  df-fz 9681  df-fzo 9810
This theorem is referenced by:  fzosplit  9844  fzocatel  9866  dfphi2  11738
  Copyright terms: Public domain W3C validator