ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzospliti Unicode version

Theorem fzospliti 10330
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )

Proof of Theorem fzospliti
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
2 elfzoelz 10299 . . . . . 6  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
32adantr 276 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
4 zlelttric 9447 . . . . 5  |-  ( ( D  e.  ZZ  /\  A  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
51, 3, 4syl2anc 411 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
65orcomd 731 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  \/  D  <_  A ) )
7 elfzole1 10308 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  B  <_  A )
87adantr 276 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  <_  A )
98a1d 22 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  B  <_  A ) )
109ancrd 326 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  ( B  <_  A  /\  A  <  D ) ) )
11 elfzolt2 10309 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  A  <  C )
1211adantr 276 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  <  C )
1312a1d 22 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  A  <  C ) )
1413ancld 325 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  ( D  <_  A  /\  A  <  C ) ) )
1510, 14orim12d 788 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  <  D  \/  D  <_  A )  ->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
166, 15mpd 13 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C
) ) )
17 elfzoel1 10297 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
1817adantr 276 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
19 elfzo 10301 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
203, 18, 1, 19syl3anc 1250 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
21 elfzoel2 10298 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
2221adantr 276 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
23 elfzo 10301 . . . 4  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
243, 1, 22, 23syl3anc 1250 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
2520, 24orbi12d 795 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) )  <->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
2616, 25mpbird 167 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    e. wcel 2177   class class class wbr 4054  (class class class)co 5962    < clt 8137    <_ cle 8138   ZZcz 9402  ..^cfzo 10294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295
This theorem is referenced by:  fzosplit  10331  fzocatel  10360  ccatass  11097  ccatswrd  11156  ccatpfx  11187  dfphi2  12627
  Copyright terms: Public domain W3C validator