ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzospliti Unicode version

Theorem fzospliti 10300
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )

Proof of Theorem fzospliti
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
2 elfzoelz 10269 . . . . . 6  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
32adantr 276 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
4 zlelttric 9417 . . . . 5  |-  ( ( D  e.  ZZ  /\  A  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
51, 3, 4syl2anc 411 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
65orcomd 731 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  \/  D  <_  A ) )
7 elfzole1 10278 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  B  <_  A )
87adantr 276 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  <_  A )
98a1d 22 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  B  <_  A ) )
109ancrd 326 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  ( B  <_  A  /\  A  <  D ) ) )
11 elfzolt2 10279 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  A  <  C )
1211adantr 276 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  <  C )
1312a1d 22 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  A  <  C ) )
1413ancld 325 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  ( D  <_  A  /\  A  <  C ) ) )
1510, 14orim12d 788 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  <  D  \/  D  <_  A )  ->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
166, 15mpd 13 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C
) ) )
17 elfzoel1 10267 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
1817adantr 276 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
19 elfzo 10271 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
203, 18, 1, 19syl3anc 1250 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
21 elfzoel2 10268 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
2221adantr 276 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
23 elfzo 10271 . . . 4  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
243, 1, 22, 23syl3anc 1250 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
2520, 24orbi12d 795 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) )  <->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
2616, 25mpbird 167 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    e. wcel 2176   class class class wbr 4044  (class class class)co 5944    < clt 8107    <_ cle 8108   ZZcz 9372  ..^cfzo 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265
This theorem is referenced by:  fzosplit  10301  fzocatel  10328  ccatass  11064  ccatswrd  11123  dfphi2  12542
  Copyright terms: Public domain W3C validator