Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniexg Unicode version

Theorem bj-uniexg 15053
Description: uniexg 4453 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniexg  |-  ( A  e.  V  ->  U. A  e.  _V )

Proof of Theorem bj-uniexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3832 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
21eleq1d 2257 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
3 vex 2754 . . 3  |-  x  e. 
_V
43bj-uniex 15052 . 2  |-  U. x  e.  _V
52, 4vtoclg 2811 1  |-  ( A  e.  V  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2159   _Vcvv 2751   U.cuni 3823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-un 4447  ax-bd0 14948  ax-bdex 14954  ax-bdel 14956  ax-bdsb 14957  ax-bdsep 15019
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-rex 2473  df-v 2753  df-uni 3824  df-bdc 14976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator