Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniexg Unicode version

Theorem bj-uniexg 15415
Description: uniexg 4470 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniexg  |-  ( A  e.  V  ->  U. A  e.  _V )

Proof of Theorem bj-uniexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3844 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
21eleq1d 2262 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
3 vex 2763 . . 3  |-  x  e. 
_V
43bj-uniex 15414 . 2  |-  U. x  e.  _V
52, 4vtoclg 2820 1  |-  ( A  e.  V  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-un 4464  ax-bd0 15310  ax-bdex 15316  ax-bdel 15318  ax-bdsb 15319  ax-bdsep 15381
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-uni 3836  df-bdc 15338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator