Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniexg Unicode version

Theorem bj-uniexg 15531
Description: uniexg 4474 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniexg  |-  ( A  e.  V  ->  U. A  e.  _V )

Proof of Theorem bj-uniexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3848 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
21eleq1d 2265 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
3 vex 2766 . . 3  |-  x  e. 
_V
43bj-uniex 15530 . 2  |-  U. x  e.  _V
52, 4vtoclg 2824 1  |-  ( A  e.  V  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-un 4468  ax-bd0 15426  ax-bdex 15432  ax-bdel 15434  ax-bdsb 15435  ax-bdsep 15497
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-uni 3840  df-bdc 15454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator