Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniexg Unicode version

Theorem bj-uniexg 13953
Description: uniexg 4424 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniexg  |-  ( A  e.  V  ->  U. A  e.  _V )

Proof of Theorem bj-uniexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3805 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
21eleq1d 2239 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
3 vex 2733 . . 3  |-  x  e. 
_V
43bj-uniex 13952 . 2  |-  U. x  e.  _V
52, 4vtoclg 2790 1  |-  ( A  e.  V  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-un 4418  ax-bd0 13848  ax-bdex 13854  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-uni 3797  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator