Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniexg | GIF version |
Description: uniexg 4417 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3798 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2235 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | bj-uniex 13799 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-un 4411 ax-bd0 13695 ax-bdex 13701 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-uni 3790 df-bdc 13723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |