Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniexg GIF version

Theorem bj-uniexg 15891
Description: uniexg 4487 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniexg (𝐴𝑉 𝐴 ∈ V)

Proof of Theorem bj-uniexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unieq 3859 . . 3 (𝑥 = 𝐴 𝑥 = 𝐴)
21eleq1d 2274 . 2 (𝑥 = 𝐴 → ( 𝑥 ∈ V ↔ 𝐴 ∈ V))
3 vex 2775 . . 3 𝑥 ∈ V
43bj-uniex 15890 . 2 𝑥 ∈ V
52, 4vtoclg 2833 1 (𝐴𝑉 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  Vcvv 2772   cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-un 4481  ax-bd0 15786  ax-bdex 15792  ax-bdel 15794  ax-bdsb 15795  ax-bdsep 15857
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-uni 3851  df-bdc 15814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator