Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unex Unicode version

Theorem bj-unex 16282
Description: unex 4532 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-unex.1  |-  A  e. 
_V
bj-unex.2  |-  B  e. 
_V
Assertion
Ref Expression
bj-unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem bj-unex
StepHypRef Expression
1 bj-unex.1 . . 3  |-  A  e. 
_V
2 bj-unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3902 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 bj-prexg 16274 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65bj-uniex 16280 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2303 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    u. cun 3195   {cpr 3667   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdor 16179  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-bdc 16204
This theorem is referenced by:  bdunexb  16283  bj-unexg  16284
  Copyright terms: Public domain W3C validator