Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unex Unicode version

Theorem bj-unex 15565
Description: unex 4476 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-unex.1  |-  A  e. 
_V
bj-unex.2  |-  B  e. 
_V
Assertion
Ref Expression
bj-unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem bj-unex
StepHypRef Expression
1 bj-unex.1 . . 3  |-  A  e. 
_V
2 bj-unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3853 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 bj-prexg 15557 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65bj-uniex 15563 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2270 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763    u. cun 3155   {cpr 3623   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-bdc 15487
This theorem is referenced by:  bdunexb  15566  bj-unexg  15567
  Copyright terms: Public domain W3C validator