Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unex Unicode version

Theorem bj-unex 15855
Description: unex 4488 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-unex.1  |-  A  e. 
_V
bj-unex.2  |-  B  e. 
_V
Assertion
Ref Expression
bj-unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem bj-unex
StepHypRef Expression
1 bj-unex.1 . . 3  |-  A  e. 
_V
2 bj-unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3864 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 bj-prexg 15847 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65bj-uniex 15853 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2279 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772    u. cun 3164   {cpr 3634   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-pr 4253  ax-un 4480  ax-bd0 15749  ax-bdor 15752  ax-bdex 15755  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758  ax-bdsep 15820
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-uni 3851  df-bdc 15777
This theorem is referenced by:  bdunexb  15856  bj-unexg  15857
  Copyright terms: Public domain W3C validator