ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd Unicode version

Theorem dvdsrd 13856
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrd  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z, 
.x.    ph, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
2 reldvdsrsrg 13854 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
4 dvdsrvald.2 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
54releqd 4759 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
63, 5mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
7 brrelex12 4713 . . . 4  |-  ( ( Rel  .||  /\  X  .||  Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
86, 7sylan 283 . . 3  |-  ( (
ph  /\  X  .||  Y )  ->  ( X  e. 
_V  /\  Y  e.  _V ) )
98ex 115 . 2  |-  ( ph  ->  ( X  .||  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
10 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  B )
1110elexd 2785 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  _V )
12 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  Y )
131ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  R  e. SRing )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  B )
15 dvdsrvald.1 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  R ) )
1615ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  B  =  ( Base `  R )
)
1714, 16eleqtrd 2284 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  ( Base `  R )
)
1810, 16eleqtrd 2284 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  ( Base `  R )
)
19 eqid 2205 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2205 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20srgcl 13732 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
2213, 17, 18, 21syl3anc 1250 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
23 dvdsrvald.3 . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  .x.  =  ( .r `  R ) )
2524oveqd 5961 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  ( z ( .r `  R ) X ) )
2622, 25, 163eltr4d 2289 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  e.  B
)
2712, 26eqeltrrd 2283 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  B )
2827elexd 2785 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  _V )
2911, 28jca 306 . . . 4  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( X  e.  _V  /\  Y  e. 
_V ) )
3029rexlimdvaa 2624 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( E. z  e.  B  ( z  .x.  X
)  =  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
3130expimpd 363 . 2  |-  ( ph  ->  ( ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y )  ->  ( X  e.  _V  /\  Y  e. 
_V ) ) )
3215, 4, 1, 23dvdsrvald 13855 . . . . . 6  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3332adantr 276 . . . . 5  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3433breqd 4055 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y ) )
35 simpl 109 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
3635eleq1d 2274 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  e.  B  <->  X  e.  B ) )
3735oveq2d 5960 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( z  .x.  x
)  =  ( z 
.x.  X ) )
38 simpr 110 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
3937, 38eqeq12d 2220 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( z  .x.  x )  =  y  <-> 
( z  .x.  X
)  =  Y ) )
4039rexbidv 2507 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  ( z  .x.  X
)  =  Y ) )
4136, 40anbi12d 473 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
42 eqid 2205 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
4341, 42brabga 4310 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4443adantl 277 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4534, 44bitrd 188 . . 3  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4645ex 115 . 2  |-  ( ph  ->  ( ( X  e. 
_V  /\  Y  e.  _V )  ->  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) ) )
479, 31, 46pm5.21ndd 707 1  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   _Vcvv 2772   class class class wbr 4044   {copab 4104   Rel wrel 4680   ` cfv 5271  (class class class)co 5944   Basecbs 12832   .rcmulr 12910  SRingcsrg 13725   ||rcdsr 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mgp 13683  df-srg 13726  df-dvdsr 13851
This theorem is referenced by:  dvdsr2d  13857  dvdsrmuld  13858  dvdsrcld  13859  dvdsrcl2  13861  dvdsrtr  13863  dvdsrmul1  13864  opprunitd  13872  crngunit  13873  rhmdvdsr  13937  subrgdvds  13997  cnfldui  14351
  Copyright terms: Public domain W3C validator