ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd Unicode version

Theorem dvdsrd 13194
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrd  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z, 
.x.    ph, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
2 reldvdsrsrg 13192 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
4 dvdsrvald.2 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
54releqd 4709 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
63, 5mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
7 brrelex12 4663 . . . 4  |-  ( ( Rel  .||  /\  X  .||  Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
86, 7sylan 283 . . 3  |-  ( (
ph  /\  X  .||  Y )  ->  ( X  e. 
_V  /\  Y  e.  _V ) )
98ex 115 . 2  |-  ( ph  ->  ( X  .||  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
10 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  B )
1110elexd 2750 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  _V )
12 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  Y )
131ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  R  e. SRing )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  B )
15 dvdsrvald.1 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  R ) )
1615ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  B  =  ( Base `  R )
)
1714, 16eleqtrd 2256 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  ( Base `  R )
)
1810, 16eleqtrd 2256 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  ( Base `  R )
)
19 eqid 2177 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2177 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20srgcl 13084 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
2213, 17, 18, 21syl3anc 1238 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
23 dvdsrvald.3 . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  .x.  =  ( .r `  R ) )
2524oveqd 5889 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  ( z ( .r `  R ) X ) )
2622, 25, 163eltr4d 2261 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  e.  B
)
2712, 26eqeltrrd 2255 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  B )
2827elexd 2750 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  _V )
2911, 28jca 306 . . . 4  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( X  e.  _V  /\  Y  e. 
_V ) )
3029rexlimdvaa 2595 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( E. z  e.  B  ( z  .x.  X
)  =  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
3130expimpd 363 . 2  |-  ( ph  ->  ( ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y )  ->  ( X  e.  _V  /\  Y  e. 
_V ) ) )
3215, 4, 1, 23dvdsrvald 13193 . . . . . 6  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3332adantr 276 . . . . 5  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3433breqd 4013 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y ) )
35 simpl 109 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
3635eleq1d 2246 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  e.  B  <->  X  e.  B ) )
3735oveq2d 5888 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( z  .x.  x
)  =  ( z 
.x.  X ) )
38 simpr 110 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
3937, 38eqeq12d 2192 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( z  .x.  x )  =  y  <-> 
( z  .x.  X
)  =  Y ) )
4039rexbidv 2478 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  ( z  .x.  X
)  =  Y ) )
4136, 40anbi12d 473 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
42 eqid 2177 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
4341, 42brabga 4263 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4443adantl 277 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4534, 44bitrd 188 . . 3  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4645ex 115 . 2  |-  ( ph  ->  ( ( X  e. 
_V  /\  Y  e.  _V )  ->  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) ) )
479, 31, 46pm5.21ndd 705 1  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   _Vcvv 2737   class class class wbr 4002   {copab 4062   Rel wrel 4630   ` cfv 5215  (class class class)co 5872   Basecbs 12454   .rcmulr 12529  SRingcsrg 13077   ||rcdsr 13186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-plusg 12541  df-mulr 12542  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-mgp 13062  df-srg 13078  df-dvdsr 13189
This theorem is referenced by:  dvdsr2d  13195  dvdsrmuld  13196  dvdsrcld  13197  dvdsrcl2  13199  dvdsrtr  13201  dvdsrmul1  13202  opprunitd  13210  crngunit  13211  subrgdvds  13294
  Copyright terms: Public domain W3C validator