ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd Unicode version

Theorem dvdsrd 14052
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrd  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z, 
.x.    ph, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
2 reldvdsrsrg 14050 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
4 dvdsrvald.2 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
54releqd 4802 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
63, 5mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
7 brrelex12 4756 . . . 4  |-  ( ( Rel  .||  /\  X  .||  Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
86, 7sylan 283 . . 3  |-  ( (
ph  /\  X  .||  Y )  ->  ( X  e. 
_V  /\  Y  e.  _V ) )
98ex 115 . 2  |-  ( ph  ->  ( X  .||  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
10 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  B )
1110elexd 2813 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  _V )
12 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  Y )
131ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  R  e. SRing )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  B )
15 dvdsrvald.1 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  R ) )
1615ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  B  =  ( Base `  R )
)
1714, 16eleqtrd 2308 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  ( Base `  R )
)
1810, 16eleqtrd 2308 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  ( Base `  R )
)
19 eqid 2229 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20srgcl 13928 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
2213, 17, 18, 21syl3anc 1271 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
23 dvdsrvald.3 . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  .x.  =  ( .r `  R ) )
2524oveqd 6017 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  ( z ( .r `  R ) X ) )
2622, 25, 163eltr4d 2313 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  e.  B
)
2712, 26eqeltrrd 2307 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  B )
2827elexd 2813 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  _V )
2911, 28jca 306 . . . 4  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( X  e.  _V  /\  Y  e. 
_V ) )
3029rexlimdvaa 2649 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( E. z  e.  B  ( z  .x.  X
)  =  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
3130expimpd 363 . 2  |-  ( ph  ->  ( ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y )  ->  ( X  e.  _V  /\  Y  e. 
_V ) ) )
3215, 4, 1, 23dvdsrvald 14051 . . . . . 6  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3332adantr 276 . . . . 5  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3433breqd 4093 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y ) )
35 simpl 109 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
3635eleq1d 2298 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  e.  B  <->  X  e.  B ) )
3735oveq2d 6016 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( z  .x.  x
)  =  ( z 
.x.  X ) )
38 simpr 110 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
3937, 38eqeq12d 2244 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( z  .x.  x )  =  y  <-> 
( z  .x.  X
)  =  Y ) )
4039rexbidv 2531 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  ( z  .x.  X
)  =  Y ) )
4136, 40anbi12d 473 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
42 eqid 2229 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
4341, 42brabga 4351 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4443adantl 277 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4534, 44bitrd 188 . . 3  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4645ex 115 . 2  |-  ( ph  ->  ( ( X  e. 
_V  /\  Y  e.  _V )  ->  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) ) )
479, 31, 46pm5.21ndd 710 1  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   class class class wbr 4082   {copab 4143   Rel wrel 4723   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106  SRingcsrg 13921   ||rcdsr 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922  df-dvdsr 14047
This theorem is referenced by:  dvdsr2d  14053  dvdsrmuld  14054  dvdsrcld  14055  dvdsrcl2  14057  dvdsrtr  14059  dvdsrmul1  14060  opprunitd  14068  crngunit  14069  rhmdvdsr  14133  subrgdvds  14193  cnfldui  14547
  Copyright terms: Public domain W3C validator