ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd Unicode version

Theorem dvdsrd 13827
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrd  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z, 
.x.    ph, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
2 reldvdsrsrg 13825 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
4 dvdsrvald.2 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
54releqd 4758 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
63, 5mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
7 brrelex12 4712 . . . 4  |-  ( ( Rel  .||  /\  X  .||  Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
86, 7sylan 283 . . 3  |-  ( (
ph  /\  X  .||  Y )  ->  ( X  e. 
_V  /\  Y  e.  _V ) )
98ex 115 . 2  |-  ( ph  ->  ( X  .||  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
10 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  B )
1110elexd 2784 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  _V )
12 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  Y )
131ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  R  e. SRing )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  B )
15 dvdsrvald.1 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  R ) )
1615ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  B  =  ( Base `  R )
)
1714, 16eleqtrd 2283 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  ( Base `  R )
)
1810, 16eleqtrd 2283 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  ( Base `  R )
)
19 eqid 2204 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2204 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20srgcl 13703 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
2213, 17, 18, 21syl3anc 1249 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
23 dvdsrvald.3 . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  .x.  =  ( .r `  R ) )
2524oveqd 5960 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  ( z ( .r `  R ) X ) )
2622, 25, 163eltr4d 2288 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  e.  B
)
2712, 26eqeltrrd 2282 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  B )
2827elexd 2784 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  _V )
2911, 28jca 306 . . . 4  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( X  e.  _V  /\  Y  e. 
_V ) )
3029rexlimdvaa 2623 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( E. z  e.  B  ( z  .x.  X
)  =  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
3130expimpd 363 . 2  |-  ( ph  ->  ( ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y )  ->  ( X  e.  _V  /\  Y  e. 
_V ) ) )
3215, 4, 1, 23dvdsrvald 13826 . . . . . 6  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3332adantr 276 . . . . 5  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3433breqd 4054 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y ) )
35 simpl 109 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
3635eleq1d 2273 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  e.  B  <->  X  e.  B ) )
3735oveq2d 5959 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( z  .x.  x
)  =  ( z 
.x.  X ) )
38 simpr 110 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
3937, 38eqeq12d 2219 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( z  .x.  x )  =  y  <-> 
( z  .x.  X
)  =  Y ) )
4039rexbidv 2506 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  ( z  .x.  X
)  =  Y ) )
4136, 40anbi12d 473 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
42 eqid 2204 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
4341, 42brabga 4309 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4443adantl 277 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4534, 44bitrd 188 . . 3  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4645ex 115 . 2  |-  ( ph  ->  ( ( X  e. 
_V  /\  Y  e.  _V )  ->  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) ) )
479, 31, 46pm5.21ndd 706 1  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   E.wrex 2484   _Vcvv 2771   class class class wbr 4043   {copab 4103   Rel wrel 4679   ` cfv 5270  (class class class)co 5943   Basecbs 12803   .rcmulr 12881  SRingcsrg 13696   ||rcdsr 13819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-mgp 13654  df-srg 13697  df-dvdsr 13822
This theorem is referenced by:  dvdsr2d  13828  dvdsrmuld  13829  dvdsrcld  13830  dvdsrcl2  13832  dvdsrtr  13834  dvdsrmul1  13835  opprunitd  13843  crngunit  13844  rhmdvdsr  13908  subrgdvds  13968  cnfldui  14322
  Copyright terms: Public domain W3C validator