| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrd | Unicode version | ||
| Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrvald.1 |
|
| dvdsrvald.2 |
|
| dvdsrvald.r |
|
| dvdsrvald.3 |
|
| Ref | Expression |
|---|---|
| dvdsrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrvald.r |
. . . . . 6
| |
| 2 | reldvdsrsrg 13969 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | dvdsrvald.2 |
. . . . . 6
| |
| 5 | 4 | releqd 4777 |
. . . . 5
|
| 6 | 3, 5 | mpbird 167 |
. . . 4
|
| 7 | brrelex12 4731 |
. . . 4
| |
| 8 | 6, 7 | sylan 283 |
. . 3
|
| 9 | 8 | ex 115 |
. 2
|
| 10 | simplr 528 |
. . . . . 6
| |
| 11 | 10 | elexd 2790 |
. . . . 5
|
| 12 | simprr 531 |
. . . . . . 7
| |
| 13 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 14 | simprl 529 |
. . . . . . . . . 10
| |
| 15 | dvdsrvald.1 |
. . . . . . . . . . 11
| |
| 16 | 15 | ad2antrr 488 |
. . . . . . . . . 10
|
| 17 | 14, 16 | eleqtrd 2286 |
. . . . . . . . 9
|
| 18 | 10, 16 | eleqtrd 2286 |
. . . . . . . . 9
|
| 19 | eqid 2207 |
. . . . . . . . . 10
| |
| 20 | eqid 2207 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | srgcl 13847 |
. . . . . . . . 9
|
| 22 | 13, 17, 18, 21 | syl3anc 1250 |
. . . . . . . 8
|
| 23 | dvdsrvald.3 |
. . . . . . . . . 10
| |
| 24 | 23 | ad2antrr 488 |
. . . . . . . . 9
|
| 25 | 24 | oveqd 5984 |
. . . . . . . 8
|
| 26 | 22, 25, 16 | 3eltr4d 2291 |
. . . . . . 7
|
| 27 | 12, 26 | eqeltrrd 2285 |
. . . . . 6
|
| 28 | 27 | elexd 2790 |
. . . . 5
|
| 29 | 11, 28 | jca 306 |
. . . 4
|
| 30 | 29 | rexlimdvaa 2626 |
. . 3
|
| 31 | 30 | expimpd 363 |
. 2
|
| 32 | 15, 4, 1, 23 | dvdsrvald 13970 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 33 | breqd 4070 |
. . . 4
|
| 35 | simpl 109 |
. . . . . . . 8
| |
| 36 | 35 | eleq1d 2276 |
. . . . . . 7
|
| 37 | 35 | oveq2d 5983 |
. . . . . . . . 9
|
| 38 | simpr 110 |
. . . . . . . . 9
| |
| 39 | 37, 38 | eqeq12d 2222 |
. . . . . . . 8
|
| 40 | 39 | rexbidv 2509 |
. . . . . . 7
|
| 41 | 36, 40 | anbi12d 473 |
. . . . . 6
|
| 42 | eqid 2207 |
. . . . . 6
| |
| 43 | 41, 42 | brabga 4328 |
. . . . 5
|
| 44 | 43 | adantl 277 |
. . . 4
|
| 45 | 34, 44 | bitrd 188 |
. . 3
|
| 46 | 45 | ex 115 |
. 2
|
| 47 | 9, 31, 46 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mgp 13798 df-srg 13841 df-dvdsr 13966 |
| This theorem is referenced by: dvdsr2d 13972 dvdsrmuld 13973 dvdsrcld 13974 dvdsrcl2 13976 dvdsrtr 13978 dvdsrmul1 13979 opprunitd 13987 crngunit 13988 rhmdvdsr 14052 subrgdvds 14112 cnfldui 14466 |
| Copyright terms: Public domain | W3C validator |