| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrd | Unicode version | ||
| Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrvald.1 |
|
| dvdsrvald.2 |
|
| dvdsrvald.r |
|
| dvdsrvald.3 |
|
| Ref | Expression |
|---|---|
| dvdsrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrvald.r |
. . . . . 6
| |
| 2 | reldvdsrsrg 13825 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | dvdsrvald.2 |
. . . . . 6
| |
| 5 | 4 | releqd 4758 |
. . . . 5
|
| 6 | 3, 5 | mpbird 167 |
. . . 4
|
| 7 | brrelex12 4712 |
. . . 4
| |
| 8 | 6, 7 | sylan 283 |
. . 3
|
| 9 | 8 | ex 115 |
. 2
|
| 10 | simplr 528 |
. . . . . 6
| |
| 11 | 10 | elexd 2784 |
. . . . 5
|
| 12 | simprr 531 |
. . . . . . 7
| |
| 13 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 14 | simprl 529 |
. . . . . . . . . 10
| |
| 15 | dvdsrvald.1 |
. . . . . . . . . . 11
| |
| 16 | 15 | ad2antrr 488 |
. . . . . . . . . 10
|
| 17 | 14, 16 | eleqtrd 2283 |
. . . . . . . . 9
|
| 18 | 10, 16 | eleqtrd 2283 |
. . . . . . . . 9
|
| 19 | eqid 2204 |
. . . . . . . . . 10
| |
| 20 | eqid 2204 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | srgcl 13703 |
. . . . . . . . 9
|
| 22 | 13, 17, 18, 21 | syl3anc 1249 |
. . . . . . . 8
|
| 23 | dvdsrvald.3 |
. . . . . . . . . 10
| |
| 24 | 23 | ad2antrr 488 |
. . . . . . . . 9
|
| 25 | 24 | oveqd 5960 |
. . . . . . . 8
|
| 26 | 22, 25, 16 | 3eltr4d 2288 |
. . . . . . 7
|
| 27 | 12, 26 | eqeltrrd 2282 |
. . . . . 6
|
| 28 | 27 | elexd 2784 |
. . . . 5
|
| 29 | 11, 28 | jca 306 |
. . . 4
|
| 30 | 29 | rexlimdvaa 2623 |
. . 3
|
| 31 | 30 | expimpd 363 |
. 2
|
| 32 | 15, 4, 1, 23 | dvdsrvald 13826 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 33 | breqd 4054 |
. . . 4
|
| 35 | simpl 109 |
. . . . . . . 8
| |
| 36 | 35 | eleq1d 2273 |
. . . . . . 7
|
| 37 | 35 | oveq2d 5959 |
. . . . . . . . 9
|
| 38 | simpr 110 |
. . . . . . . . 9
| |
| 39 | 37, 38 | eqeq12d 2219 |
. . . . . . . 8
|
| 40 | 39 | rexbidv 2506 |
. . . . . . 7
|
| 41 | 36, 40 | anbi12d 473 |
. . . . . 6
|
| 42 | eqid 2204 |
. . . . . 6
| |
| 43 | 41, 42 | brabga 4309 |
. . . . 5
|
| 44 | 43 | adantl 277 |
. . . 4
|
| 45 | 34, 44 | bitrd 188 |
. . 3
|
| 46 | 45 | ex 115 |
. 2
|
| 47 | 9, 31, 46 | pm5.21ndd 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-plusg 12893 df-mulr 12894 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-mgp 13654 df-srg 13697 df-dvdsr 13822 |
| This theorem is referenced by: dvdsr2d 13828 dvdsrmuld 13829 dvdsrcld 13830 dvdsrcl2 13832 dvdsrtr 13834 dvdsrmul1 13835 opprunitd 13843 crngunit 13844 rhmdvdsr 13908 subrgdvds 13968 cnfldui 14322 |
| Copyright terms: Public domain | W3C validator |