ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrd Unicode version

Theorem dvdsrd 13650
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsrvald.1  |-  ( ph  ->  B  =  ( Base `  R ) )
dvdsrvald.2  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
dvdsrvald.r  |-  ( ph  ->  R  e. SRing )
dvdsrvald.3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
Assertion
Ref Expression
dvdsrd  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z, 
.x.    ph, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrvald.r . . . . . 6  |-  ( ph  ->  R  e. SRing )
2 reldvdsrsrg 13648 . . . . . 6  |-  ( R  e. SRing  ->  Rel  ( ||r `  R
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  Rel  ( ||r `
 R ) )
4 dvdsrvald.2 . . . . . 6  |-  ( ph  -> 
.||  =  ( ||r `  R
) )
54releqd 4747 . . . . 5  |-  ( ph  ->  ( Rel  .||  <->  Rel  ( ||r `  R
) ) )
63, 5mpbird 167 . . . 4  |-  ( ph  ->  Rel  .||  )
7 brrelex12 4701 . . . 4  |-  ( ( Rel  .||  /\  X  .||  Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
86, 7sylan 283 . . 3  |-  ( (
ph  /\  X  .||  Y )  ->  ( X  e. 
_V  /\  Y  e.  _V ) )
98ex 115 . 2  |-  ( ph  ->  ( X  .||  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
10 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  B )
1110elexd 2776 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  _V )
12 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  Y )
131ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  R  e. SRing )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  B )
15 dvdsrvald.1 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  R ) )
1615ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  B  =  ( Base `  R )
)
1714, 16eleqtrd 2275 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  z  e.  ( Base `  R )
)
1810, 16eleqtrd 2275 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  X  e.  ( Base `  R )
)
19 eqid 2196 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
2119, 20srgcl 13526 . . . . . . . . 9  |-  ( ( R  e. SRing  /\  z  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
2213, 17, 18, 21syl3anc 1249 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z
( .r `  R
) X )  e.  ( Base `  R
) )
23 dvdsrvald.3 . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  .x.  =  ( .r `  R ) )
2524oveqd 5939 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  =  ( z ( .r `  R ) X ) )
2622, 25, 163eltr4d 2280 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( z  .x.  X )  e.  B
)
2712, 26eqeltrrd 2274 . . . . . 6  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  B )
2827elexd 2776 . . . . 5  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  Y  e.  _V )
2911, 28jca 306 . . . 4  |-  ( ( ( ph  /\  X  e.  B )  /\  (
z  e.  B  /\  ( z  .x.  X
)  =  Y ) )  ->  ( X  e.  _V  /\  Y  e. 
_V ) )
3029rexlimdvaa 2615 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( E. z  e.  B  ( z  .x.  X
)  =  Y  -> 
( X  e.  _V  /\  Y  e.  _V )
) )
3130expimpd 363 . 2  |-  ( ph  ->  ( ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y )  ->  ( X  e.  _V  /\  Y  e. 
_V ) ) )
3215, 4, 1, 23dvdsrvald 13649 . . . . . 6  |-  ( ph  -> 
.||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3332adantr 276 . . . . 5  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
3433breqd 4044 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y ) )
35 simpl 109 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
3635eleq1d 2265 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  e.  B  <->  X  e.  B ) )
3735oveq2d 5938 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( z  .x.  x
)  =  ( z 
.x.  X ) )
38 simpr 110 . . . . . . . . 9  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
3937, 38eqeq12d 2211 . . . . . . . 8  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( z  .x.  x )  =  y  <-> 
( z  .x.  X
)  =  Y ) )
4039rexbidv 2498 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  ( z  .x.  X
)  =  Y ) )
4136, 40anbi12d 473 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
42 eqid 2196 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
4341, 42brabga 4298 . . . . 5  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4443adantl 277 . . . 4  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4534, 44bitrd 188 . . 3  |-  ( (
ph  /\  ( X  e.  _V  /\  Y  e. 
_V ) )  -> 
( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
4645ex 115 . 2  |-  ( ph  ->  ( ( X  e. 
_V  /\  Y  e.  _V )  ->  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) ) )
479, 31, 46pm5.21ndd 706 1  |-  ( ph  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   _Vcvv 2763   class class class wbr 4033   {copab 4093   Rel wrel 4668   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SRingcsrg 13519   ||rcdsr 13642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-srg 13520  df-dvdsr 13645
This theorem is referenced by:  dvdsr2d  13651  dvdsrmuld  13652  dvdsrcld  13653  dvdsrcl2  13655  dvdsrtr  13657  dvdsrmul1  13658  opprunitd  13666  crngunit  13667  rhmdvdsr  13731  subrgdvds  13791  cnfldui  14145
  Copyright terms: Public domain W3C validator