Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeq123d | Unicode version |
Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
supeq123d.a | |
supeq123d.b | |
supeq123d.c |
Ref | Expression |
---|---|
supeq123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq123d.b | . . . 4 | |
2 | supeq123d.a | . . . . . 6 | |
3 | supeq123d.c | . . . . . . . 8 | |
4 | 3 | breqd 3993 | . . . . . . 7 |
5 | 4 | notbid 657 | . . . . . 6 |
6 | 2, 5 | raleqbidv 2673 | . . . . 5 |
7 | 3 | breqd 3993 | . . . . . . 7 |
8 | 3 | breqd 3993 | . . . . . . . 8 |
9 | 2, 8 | rexeqbidv 2674 | . . . . . . 7 |
10 | 7, 9 | imbi12d 233 | . . . . . 6 |
11 | 1, 10 | raleqbidv 2673 | . . . . 5 |
12 | 6, 11 | anbi12d 465 | . . . 4 |
13 | 1, 12 | rabeqbidv 2721 | . . 3 |
14 | 13 | unieqd 3800 | . 2 |
15 | df-sup 6949 | . 2 | |
16 | df-sup 6949 | . 2 | |
17 | 14, 15, 16 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wral 2444 wrex 2445 crab 2448 cuni 3789 class class class wbr 3982 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-uni 3790 df-br 3983 df-sup 6949 |
This theorem is referenced by: infeq123d 6981 |
Copyright terms: Public domain | W3C validator |