| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq123d | Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| supeq123d.a |
|
| supeq123d.b |
|
| supeq123d.c |
|
| Ref | Expression |
|---|---|
| supeq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq123d.b |
. . . 4
| |
| 2 | supeq123d.a |
. . . . . 6
| |
| 3 | supeq123d.c |
. . . . . . . 8
| |
| 4 | 3 | breqd 4044 |
. . . . . . 7
|
| 5 | 4 | notbid 668 |
. . . . . 6
|
| 6 | 2, 5 | raleqbidv 2709 |
. . . . 5
|
| 7 | 3 | breqd 4044 |
. . . . . . 7
|
| 8 | 3 | breqd 4044 |
. . . . . . . 8
|
| 9 | 2, 8 | rexeqbidv 2710 |
. . . . . . 7
|
| 10 | 7, 9 | imbi12d 234 |
. . . . . 6
|
| 11 | 1, 10 | raleqbidv 2709 |
. . . . 5
|
| 12 | 6, 11 | anbi12d 473 |
. . . 4
|
| 13 | 1, 12 | rabeqbidv 2758 |
. . 3
|
| 14 | 13 | unieqd 3850 |
. 2
|
| 15 | df-sup 7050 |
. 2
| |
| 16 | df-sup 7050 |
. 2
| |
| 17 | 14, 15, 16 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-uni 3840 df-br 4034 df-sup 7050 |
| This theorem is referenced by: infeq123d 7082 |
| Copyright terms: Public domain | W3C validator |