ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq123d Unicode version

Theorem supeq123d 7057
Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
supeq123d.a  |-  ( ph  ->  A  =  D )
supeq123d.b  |-  ( ph  ->  B  =  E )
supeq123d.c  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
supeq123d  |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F )
)

Proof of Theorem supeq123d
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supeq123d.b . . . 4  |-  ( ph  ->  B  =  E )
2 supeq123d.a . . . . . 6  |-  ( ph  ->  A  =  D )
3 supeq123d.c . . . . . . . 8  |-  ( ph  ->  C  =  F )
43breqd 4044 . . . . . . 7  |-  ( ph  ->  ( x C y  <-> 
x F y ) )
54notbid 668 . . . . . 6  |-  ( ph  ->  ( -.  x C y  <->  -.  x F
y ) )
62, 5raleqbidv 2709 . . . . 5  |-  ( ph  ->  ( A. y  e.  A  -.  x C y  <->  A. y  e.  D  -.  x F y ) )
73breqd 4044 . . . . . . 7  |-  ( ph  ->  ( y C x  <-> 
y F x ) )
83breqd 4044 . . . . . . . 8  |-  ( ph  ->  ( y C z  <-> 
y F z ) )
92, 8rexeqbidv 2710 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  A  y C z  <->  E. z  e.  D  y F z ) )
107, 9imbi12d 234 . . . . . 6  |-  ( ph  ->  ( ( y C x  ->  E. z  e.  A  y C
z )  <->  ( y F x  ->  E. z  e.  D  y F
z ) ) )
111, 10raleqbidv 2709 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( y C x  ->  E. z  e.  A  y C
z )  <->  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F
z ) ) )
126, 11anbi12d 473 . . . 4  |-  ( ph  ->  ( ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) )  <-> 
( A. y  e.  D  -.  x F y  /\  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F
z ) ) ) )
131, 12rabeqbidv 2758 . . 3  |-  ( ph  ->  { x  e.  B  |  ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) ) }  =  { x  e.  E  |  ( A. y  e.  D  -.  x F y  /\  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F z ) ) } )
1413unieqd 3850 . 2  |-  ( ph  ->  U. { x  e.  B  |  ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) ) }  =  U. {
x  e.  E  | 
( A. y  e.  D  -.  x F y  /\  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F
z ) ) } )
15 df-sup 7050 . 2  |-  sup ( A ,  B ,  C )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) ) }
16 df-sup 7050 . 2  |-  sup ( D ,  E ,  F )  =  U. { x  e.  E  |  ( A. y  e.  D  -.  x F y  /\  A. y  e.  E  (
y F x  ->  E. z  e.  D  y F z ) ) }
1714, 15, 163eqtr4g 2254 1  |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   A.wral 2475   E.wrex 2476   {crab 2479   U.cuni 3839   class class class wbr 4033   supcsup 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-uni 3840  df-br 4034  df-sup 7050
This theorem is referenced by:  infeq123d  7082
  Copyright terms: Public domain W3C validator