ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitpropdg Unicode version

Theorem unitpropdg 13704
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
unitpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
unitpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
unitpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
unitpropdg.k  |-  ( ph  ->  K  e.  Ring )
unitpropdg.l  |-  ( ph  ->  L  e.  Ring )
Assertion
Ref Expression
unitpropdg  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem unitpropdg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 unitpropdg.1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  K ) )
2 unitpropdg.2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  L ) )
3 unitpropdg.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
4 unitpropdg.k . . . . . . 7  |-  ( ph  ->  K  e.  Ring )
5 unitpropdg.l . . . . . . 7  |-  ( ph  ->  L  e.  Ring )
61, 2, 3, 4, 5rngidpropdg 13702 . . . . . 6  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
76breq2d 4045 . . . . 5  |-  ( ph  ->  ( z ( ||r `  K
) ( 1r `  K )  <->  z ( ||r `  K ) ( 1r
`  L ) ) )
86breq2d 4045 . . . . 5  |-  ( ph  ->  ( z ( ||r `  (oppr `  K
) ) ( 1r
`  K )  <->  z ( ||r `  (oppr
`  K ) ) ( 1r `  L
) ) )
97, 8anbi12d 473 . . . 4  |-  ( ph  ->  ( ( z (
||r `  K ) ( 1r
`  K )  /\  z ( ||r `
 (oppr
`  K ) ) ( 1r `  K
) )  <->  ( z
( ||r `
 K ) ( 1r `  L )  /\  z ( ||r `  (oppr `  K
) ) ( 1r
`  L ) ) ) )
10 ringsrg 13603 . . . . . . . 8  |-  ( K  e.  Ring  ->  K  e. SRing
)
114, 10syl 14 . . . . . . 7  |-  ( ph  ->  K  e. SRing )
12 ringsrg 13603 . . . . . . . 8  |-  ( L  e.  Ring  ->  L  e. SRing
)
135, 12syl 14 . . . . . . 7  |-  ( ph  ->  L  e. SRing )
141, 2, 3, 11, 13dvdsrpropdg 13703 . . . . . 6  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
1514breqd 4044 . . . . 5  |-  ( ph  ->  ( z ( ||r `  K
) ( 1r `  L )  <->  z ( ||r `  L ) ( 1r
`  L ) ) )
16 eqid 2196 . . . . . . . . . 10  |-  (oppr `  K
)  =  (oppr `  K
)
17 eqid 2196 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1816, 17opprbasg 13631 . . . . . . . . 9  |-  ( K  e.  Ring  ->  ( Base `  K )  =  (
Base `  (oppr
`  K ) ) )
194, 18syl 14 . . . . . . . 8  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (oppr
`  K ) ) )
201, 19eqtrd 2229 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (oppr
`  K ) ) )
21 eqid 2196 . . . . . . . . . 10  |-  (oppr `  L
)  =  (oppr `  L
)
22 eqid 2196 . . . . . . . . . 10  |-  ( Base `  L )  =  (
Base `  L )
2321, 22opprbasg 13631 . . . . . . . . 9  |-  ( L  e.  Ring  ->  ( Base `  L )  =  (
Base `  (oppr
`  L ) ) )
245, 23syl 14 . . . . . . . 8  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (oppr
`  L ) ) )
252, 24eqtrd 2229 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (oppr
`  L ) ) )
263ancom2s 566 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
274adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  ->  K  e.  Ring )
28 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
y  e.  B )
29 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  ->  x  e.  B )
30 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  K )  =  ( .r `  K
)
31 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  (oppr
`  K ) )  =  ( .r `  (oppr `  K ) )
3217, 30, 16, 31opprmulg 13627 . . . . . . . . 9  |-  ( ( K  e.  Ring  /\  y  e.  B  /\  x  e.  B )  ->  (
y ( .r `  (oppr `  K ) ) x )  =  ( x ( .r `  K
) y ) )
3327, 28, 29, 32syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( .r
`  (oppr
`  K ) ) x )  =  ( x ( .r `  K ) y ) )
345adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  ->  L  e.  Ring )
35 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  L )  =  ( .r `  L
)
36 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  (oppr
`  L ) )  =  ( .r `  (oppr `  L ) )
3722, 35, 21, 36opprmulg 13627 . . . . . . . . 9  |-  ( ( L  e.  Ring  /\  y  e.  B  /\  x  e.  B )  ->  (
y ( .r `  (oppr `  L ) ) x )  =  ( x ( .r `  L
) y ) )
3834, 28, 29, 37syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( .r
`  (oppr
`  L ) ) x )  =  ( x ( .r `  L ) y ) )
3926, 33, 383eqtr4d 2239 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( .r
`  (oppr
`  K ) ) x )  =  ( y ( .r `  (oppr `  L ) ) x ) )
4016opprring 13635 . . . . . . . 8  |-  ( K  e.  Ring  ->  (oppr `  K
)  e.  Ring )
41 ringsrg 13603 . . . . . . . 8  |-  ( (oppr `  K )  e.  Ring  -> 
(oppr `  K )  e. SRing )
424, 40, 413syl 17 . . . . . . 7  |-  ( ph  ->  (oppr
`  K )  e. SRing
)
4321opprring 13635 . . . . . . . 8  |-  ( L  e.  Ring  ->  (oppr `  L
)  e.  Ring )
44 ringsrg 13603 . . . . . . . 8  |-  ( (oppr `  L )  e.  Ring  -> 
(oppr `  L )  e. SRing )
455, 43, 443syl 17 . . . . . . 7  |-  ( ph  ->  (oppr
`  L )  e. SRing
)
4620, 25, 39, 42, 45dvdsrpropdg 13703 . . . . . 6  |-  ( ph  ->  ( ||r `
 (oppr
`  K ) )  =  ( ||r `
 (oppr
`  L ) ) )
4746breqd 4044 . . . . 5  |-  ( ph  ->  ( z ( ||r `  (oppr `  K
) ) ( 1r
`  L )  <->  z ( ||r `  (oppr
`  L ) ) ( 1r `  L
) ) )
4815, 47anbi12d 473 . . . 4  |-  ( ph  ->  ( ( z (
||r `  K ) ( 1r
`  L )  /\  z ( ||r `
 (oppr
`  K ) ) ( 1r `  L
) )  <->  ( z
( ||r `
 L ) ( 1r `  L )  /\  z ( ||r `  (oppr `  L
) ) ( 1r
`  L ) ) ) )
499, 48bitrd 188 . . 3  |-  ( ph  ->  ( ( z (
||r `  K ) ( 1r
`  K )  /\  z ( ||r `
 (oppr
`  K ) ) ( 1r `  K
) )  <->  ( z
( ||r `
 L ) ( 1r `  L )  /\  z ( ||r `  (oppr `  L
) ) ( 1r
`  L ) ) ) )
50 eqidd 2197 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  K )
)
51 eqidd 2197 . . . 4  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  K ) )
52 eqidd 2197 . . . 4  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 K ) )
53 eqidd 2197 . . . 4  |-  ( ph  ->  (oppr
`  K )  =  (oppr
`  K ) )
54 eqidd 2197 . . . 4  |-  ( ph  ->  ( ||r `
 (oppr
`  K ) )  =  ( ||r `
 (oppr
`  K ) ) )
5550, 51, 52, 53, 54, 11isunitd 13662 . . 3  |-  ( ph  ->  ( z  e.  (Unit `  K )  <->  ( z
( ||r `
 K ) ( 1r `  K )  /\  z ( ||r `  (oppr `  K
) ) ( 1r
`  K ) ) ) )
56 eqidd 2197 . . . 4  |-  ( ph  ->  (Unit `  L )  =  (Unit `  L )
)
57 eqidd 2197 . . . 4  |-  ( ph  ->  ( 1r `  L
)  =  ( 1r
`  L ) )
58 eqidd 2197 . . . 4  |-  ( ph  ->  ( ||r `
 L )  =  ( ||r `
 L ) )
59 eqidd 2197 . . . 4  |-  ( ph  ->  (oppr
`  L )  =  (oppr
`  L ) )
60 eqidd 2197 . . . 4  |-  ( ph  ->  ( ||r `
 (oppr
`  L ) )  =  ( ||r `
 (oppr
`  L ) ) )
6156, 57, 58, 59, 60, 13isunitd 13662 . . 3  |-  ( ph  ->  ( z  e.  (Unit `  L )  <->  ( z
( ||r `
 L ) ( 1r `  L )  /\  z ( ||r `  (oppr `  L
) ) ( 1r
`  L ) ) ) )
6249, 55, 613bitr4d 220 . 2  |-  ( ph  ->  ( z  e.  (Unit `  K )  <->  z  e.  (Unit `  L ) ) )
6362eqrdv 2194 1  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756   1rcur 13515  SRingcsrg 13519   Ringcrg 13552  opprcoppr 13623   ||rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by:  invrpropdg  13705
  Copyright terms: Public domain W3C validator