ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitpropdg Unicode version

Theorem unitpropdg 14025
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
unitpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
unitpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
unitpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
unitpropdg.k  |-  ( ph  ->  K  e.  Ring )
unitpropdg.l  |-  ( ph  ->  L  e.  Ring )
Assertion
Ref Expression
unitpropdg  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem unitpropdg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 unitpropdg.1 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  K ) )
2 unitpropdg.2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  L ) )
3 unitpropdg.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
4 unitpropdg.k . . . . . . 7  |-  ( ph  ->  K  e.  Ring )
5 unitpropdg.l . . . . . . 7  |-  ( ph  ->  L  e.  Ring )
61, 2, 3, 4, 5rngidpropdg 14023 . . . . . 6  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
76breq2d 4071 . . . . 5  |-  ( ph  ->  ( z ( ||r `  K
) ( 1r `  K )  <->  z ( ||r `  K ) ( 1r
`  L ) ) )
86breq2d 4071 . . . . 5  |-  ( ph  ->  ( z ( ||r `  (oppr `  K
) ) ( 1r
`  K )  <->  z ( ||r `  (oppr
`  K ) ) ( 1r `  L
) ) )
97, 8anbi12d 473 . . . 4  |-  ( ph  ->  ( ( z (
||r `  K ) ( 1r
`  K )  /\  z ( ||r `
 (oppr
`  K ) ) ( 1r `  K
) )  <->  ( z
( ||r `
 K ) ( 1r `  L )  /\  z ( ||r `  (oppr `  K
) ) ( 1r
`  L ) ) ) )
10 ringsrg 13924 . . . . . . . 8  |-  ( K  e.  Ring  ->  K  e. SRing
)
114, 10syl 14 . . . . . . 7  |-  ( ph  ->  K  e. SRing )
12 ringsrg 13924 . . . . . . . 8  |-  ( L  e.  Ring  ->  L  e. SRing
)
135, 12syl 14 . . . . . . 7  |-  ( ph  ->  L  e. SRing )
141, 2, 3, 11, 13dvdsrpropdg 14024 . . . . . 6  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
1514breqd 4070 . . . . 5  |-  ( ph  ->  ( z ( ||r `  K
) ( 1r `  L )  <->  z ( ||r `  L ) ( 1r
`  L ) ) )
16 eqid 2207 . . . . . . . . . 10  |-  (oppr `  K
)  =  (oppr `  K
)
17 eqid 2207 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1816, 17opprbasg 13952 . . . . . . . . 9  |-  ( K  e.  Ring  ->  ( Base `  K )  =  (
Base `  (oppr
`  K ) ) )
194, 18syl 14 . . . . . . . 8  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (oppr
`  K ) ) )
201, 19eqtrd 2240 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (oppr
`  K ) ) )
21 eqid 2207 . . . . . . . . . 10  |-  (oppr `  L
)  =  (oppr `  L
)
22 eqid 2207 . . . . . . . . . 10  |-  ( Base `  L )  =  (
Base `  L )
2321, 22opprbasg 13952 . . . . . . . . 9  |-  ( L  e.  Ring  ->  ( Base `  L )  =  (
Base `  (oppr
`  L ) ) )
245, 23syl 14 . . . . . . . 8  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (oppr
`  L ) ) )
252, 24eqtrd 2240 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  (oppr
`  L ) ) )
263ancom2s 566 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
274adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  ->  K  e.  Ring )
28 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
y  e.  B )
29 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  ->  x  e.  B )
30 eqid 2207 . . . . . . . . . 10  |-  ( .r
`  K )  =  ( .r `  K
)
31 eqid 2207 . . . . . . . . . 10  |-  ( .r
`  (oppr
`  K ) )  =  ( .r `  (oppr `  K ) )
3217, 30, 16, 31opprmulg 13948 . . . . . . . . 9  |-  ( ( K  e.  Ring  /\  y  e.  B  /\  x  e.  B )  ->  (
y ( .r `  (oppr `  K ) ) x )  =  ( x ( .r `  K
) y ) )
3327, 28, 29, 32syl3anc 1250 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( .r
`  (oppr
`  K ) ) x )  =  ( x ( .r `  K ) y ) )
345adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  ->  L  e.  Ring )
35 eqid 2207 . . . . . . . . . 10  |-  ( .r
`  L )  =  ( .r `  L
)
36 eqid 2207 . . . . . . . . . 10  |-  ( .r
`  (oppr
`  L ) )  =  ( .r `  (oppr `  L ) )
3722, 35, 21, 36opprmulg 13948 . . . . . . . . 9  |-  ( ( L  e.  Ring  /\  y  e.  B  /\  x  e.  B )  ->  (
y ( .r `  (oppr `  L ) ) x )  =  ( x ( .r `  L
) y ) )
3834, 28, 29, 37syl3anc 1250 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( .r
`  (oppr
`  L ) ) x )  =  ( x ( .r `  L ) y ) )
3926, 33, 383eqtr4d 2250 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( .r
`  (oppr
`  K ) ) x )  =  ( y ( .r `  (oppr `  L ) ) x ) )
4016opprring 13956 . . . . . . . 8  |-  ( K  e.  Ring  ->  (oppr `  K
)  e.  Ring )
41 ringsrg 13924 . . . . . . . 8  |-  ( (oppr `  K )  e.  Ring  -> 
(oppr `  K )  e. SRing )
424, 40, 413syl 17 . . . . . . 7  |-  ( ph  ->  (oppr
`  K )  e. SRing
)
4321opprring 13956 . . . . . . . 8  |-  ( L  e.  Ring  ->  (oppr `  L
)  e.  Ring )
44 ringsrg 13924 . . . . . . . 8  |-  ( (oppr `  L )  e.  Ring  -> 
(oppr `  L )  e. SRing )
455, 43, 443syl 17 . . . . . . 7  |-  ( ph  ->  (oppr
`  L )  e. SRing
)
4620, 25, 39, 42, 45dvdsrpropdg 14024 . . . . . 6  |-  ( ph  ->  ( ||r `
 (oppr
`  K ) )  =  ( ||r `
 (oppr
`  L ) ) )
4746breqd 4070 . . . . 5  |-  ( ph  ->  ( z ( ||r `  (oppr `  K
) ) ( 1r
`  L )  <->  z ( ||r `  (oppr
`  L ) ) ( 1r `  L
) ) )
4815, 47anbi12d 473 . . . 4  |-  ( ph  ->  ( ( z (
||r `  K ) ( 1r
`  L )  /\  z ( ||r `
 (oppr
`  K ) ) ( 1r `  L
) )  <->  ( z
( ||r `
 L ) ( 1r `  L )  /\  z ( ||r `  (oppr `  L
) ) ( 1r
`  L ) ) ) )
499, 48bitrd 188 . . 3  |-  ( ph  ->  ( ( z (
||r `  K ) ( 1r
`  K )  /\  z ( ||r `
 (oppr
`  K ) ) ( 1r `  K
) )  <->  ( z
( ||r `
 L ) ( 1r `  L )  /\  z ( ||r `  (oppr `  L
) ) ( 1r
`  L ) ) ) )
50 eqidd 2208 . . . 4  |-  ( ph  ->  (Unit `  K )  =  (Unit `  K )
)
51 eqidd 2208 . . . 4  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  K ) )
52 eqidd 2208 . . . 4  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 K ) )
53 eqidd 2208 . . . 4  |-  ( ph  ->  (oppr
`  K )  =  (oppr
`  K ) )
54 eqidd 2208 . . . 4  |-  ( ph  ->  ( ||r `
 (oppr
`  K ) )  =  ( ||r `
 (oppr
`  K ) ) )
5550, 51, 52, 53, 54, 11isunitd 13983 . . 3  |-  ( ph  ->  ( z  e.  (Unit `  K )  <->  ( z
( ||r `
 K ) ( 1r `  K )  /\  z ( ||r `  (oppr `  K
) ) ( 1r
`  K ) ) ) )
56 eqidd 2208 . . . 4  |-  ( ph  ->  (Unit `  L )  =  (Unit `  L )
)
57 eqidd 2208 . . . 4  |-  ( ph  ->  ( 1r `  L
)  =  ( 1r
`  L ) )
58 eqidd 2208 . . . 4  |-  ( ph  ->  ( ||r `
 L )  =  ( ||r `
 L ) )
59 eqidd 2208 . . . 4  |-  ( ph  ->  (oppr
`  L )  =  (oppr
`  L ) )
60 eqidd 2208 . . . 4  |-  ( ph  ->  ( ||r `
 (oppr
`  L ) )  =  ( ||r `
 (oppr
`  L ) ) )
6156, 57, 58, 59, 60, 13isunitd 13983 . . 3  |-  ( ph  ->  ( z  e.  (Unit `  L )  <->  ( z
( ||r `
 L ) ( 1r `  L )  /\  z ( ||r `  (oppr `  L
) ) ( 1r
`  L ) ) ) )
6249, 55, 613bitr4d 220 . 2  |-  ( ph  ->  ( z  e.  (Unit `  K )  <->  z  e.  (Unit `  L ) ) )
6362eqrdv 2205 1  |-  ( ph  ->  (Unit `  K )  =  (Unit `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025   1rcur 13836  SRingcsrg 13840   Ringcrg 13873  opprcoppr 13944   ||rcdsr 13963  Unitcui 13964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967
This theorem is referenced by:  invrpropdg  14026
  Copyright terms: Public domain W3C validator