ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfib Unicode version

Theorem shftfib 11249
Description: Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfib  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )

Proof of Theorem shftfib
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . 7  |-  F  e. 
_V
21shftfval 11247 . . . . . 6  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
32breqd 4070 . . . . 5  |-  ( A  e.  CC  ->  ( B ( F  shift  A ) z  <->  B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z ) )
4 vex 2779 . . . . . 6  |-  z  e. 
_V
5 eleq1 2270 . . . . . . . 8  |-  ( x  =  B  ->  (
x  e.  CC  <->  B  e.  CC ) )
6 oveq1 5974 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  -  A )  =  ( B  -  A ) )
76breq1d 4069 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  -  A
) F y  <->  ( B  -  A ) F y ) )
85, 7anbi12d 473 . . . . . . 7  |-  ( x  =  B  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F y ) ) )
9 breq2 4063 . . . . . . . 8  |-  ( y  =  z  ->  (
( B  -  A
) F y  <->  ( B  -  A ) F z ) )
109anbi2d 464 . . . . . . 7  |-  ( y  =  z  ->  (
( B  e.  CC  /\  ( B  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
11 eqid 2207 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
128, 10, 11brabg 4333 . . . . . 6  |-  ( ( B  e.  CC  /\  z  e.  _V )  ->  ( B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
134, 12mpan2 425 . . . . 5  |-  ( B  e.  CC  ->  ( B { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
143, 13sylan9bb 462 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ( F 
shift  A ) z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
15 ibar 301 . . . . 5  |-  ( B  e.  CC  ->  (
( B  -  A
) F z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
1615adantl 277 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B  -  A ) F z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
1714, 16bitr4d 191 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ( F 
shift  A ) z  <->  ( B  -  A ) F z ) )
1817abbidv 2325 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { z  |  B
( F  shift  A ) z }  =  {
z  |  ( B  -  A ) F z } )
19 imasng 5066 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
2019adantl 277 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  {
z  |  B ( F  shift  A )
z } )
21 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
22 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2321, 22subcld 8418 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
24 imasng 5066 . . 3  |-  ( ( B  -  A )  e.  CC  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2523, 24syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F " {
( B  -  A
) } )  =  { z  |  ( B  -  A ) F z } )
2618, 20, 253eqtr4d 2250 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776   {csn 3643   class class class wbr 4059   {copab 4120   "cima 4696  (class class class)co 5967   CCcc 7958    - cmin 8278    shift cshi 11240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-shft 11241
This theorem is referenced by:  shftval  11251
  Copyright terms: Public domain W3C validator