ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfib Unicode version

Theorem shftfib 10967
Description: Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfib  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )

Proof of Theorem shftfib
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . 7  |-  F  e. 
_V
21shftfval 10965 . . . . . 6  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
32breqd 4040 . . . . 5  |-  ( A  e.  CC  ->  ( B ( F  shift  A ) z  <->  B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z ) )
4 vex 2763 . . . . . 6  |-  z  e. 
_V
5 eleq1 2256 . . . . . . . 8  |-  ( x  =  B  ->  (
x  e.  CC  <->  B  e.  CC ) )
6 oveq1 5925 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  -  A )  =  ( B  -  A ) )
76breq1d 4039 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  -  A
) F y  <->  ( B  -  A ) F y ) )
85, 7anbi12d 473 . . . . . . 7  |-  ( x  =  B  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F y ) ) )
9 breq2 4033 . . . . . . . 8  |-  ( y  =  z  ->  (
( B  -  A
) F y  <->  ( B  -  A ) F z ) )
109anbi2d 464 . . . . . . 7  |-  ( y  =  z  ->  (
( B  e.  CC  /\  ( B  -  A
) F y )  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
11 eqid 2193 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
128, 10, 11brabg 4299 . . . . . 6  |-  ( ( B  e.  CC  /\  z  e.  _V )  ->  ( B { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
134, 12mpan2 425 . . . . 5  |-  ( B  e.  CC  ->  ( B { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
143, 13sylan9bb 462 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ( F 
shift  A ) z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
15 ibar 301 . . . . 5  |-  ( B  e.  CC  ->  (
( B  -  A
) F z  <->  ( B  e.  CC  /\  ( B  -  A ) F z ) ) )
1615adantl 277 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B  -  A ) F z  <-> 
( B  e.  CC  /\  ( B  -  A
) F z ) ) )
1714, 16bitr4d 191 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ( F 
shift  A ) z  <->  ( B  -  A ) F z ) )
1817abbidv 2311 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { z  |  B
( F  shift  A ) z }  =  {
z  |  ( B  -  A ) F z } )
19 imasng 5030 . . 3  |-  ( B  e.  CC  ->  (
( F  shift  A )
" { B }
)  =  { z  |  B ( F 
shift  A ) z } )
2019adantl 277 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  {
z  |  B ( F  shift  A )
z } )
21 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
22 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2321, 22subcld 8330 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
24 imasng 5030 . . 3  |-  ( ( B  -  A )  e.  CC  ->  ( F " { ( B  -  A ) } )  =  { z  |  ( B  -  A ) F z } )
2523, 24syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F " {
( B  -  A
) } )  =  { z  |  ( B  -  A ) F z } )
2618, 20, 253eqtr4d 2236 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760   {csn 3618   class class class wbr 4029   {copab 4089   "cima 4662  (class class class)co 5918   CCcc 7870    - cmin 8190    shift cshi 10958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-shft 10959
This theorem is referenced by:  shftval  10969
  Copyright terms: Public domain W3C validator