ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr Unicode version

Theorem lmbr 13007
Description: Express the binary relation "sequence  F converges to point  P " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC 
X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 12984. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
Assertion
Ref Expression
lmbr  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Distinct variable groups:    y, u, F   
u, J, y    ph, u    u, P    u, X, y
Allowed substitution hints:    ph( y)    P( y)

Proof of Theorem lmbr
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmfval 12986 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
31, 2syl 14 . . 3  |-  ( ph  ->  ( ~~> t `  J
)  =  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
43breqd 4000 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P
) )
5 reseq1 4885 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  |`  y )  =  ( F  |`  y
) )
65feq1d 5334 . . . . . . . 8  |-  ( f  =  F  ->  (
( f  |`  y
) : y --> u  <-> 
( F  |`  y
) : y --> u ) )
76rexbidv 2471 . . . . . . 7  |-  ( f  =  F  ->  ( E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u  <->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )
87imbi2d 229 . . . . . 6  |-  ( f  =  F  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
98ralbidv 2470 . . . . 5  |-  ( f  =  F  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
10 eleq1 2233 . . . . . . 7  |-  ( x  =  P  ->  (
x  e.  u  <->  P  e.  u ) )
1110imbi1d 230 . . . . . 6  |-  ( x  =  P  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <-> 
( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1211ralbidv 2470 . . . . 5  |-  ( x  =  P  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
139, 12sylan9bb 459 . . . 4  |-  ( ( f  =  F  /\  x  =  P )  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
14 df-3an 975 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1514opabbii 4056 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
1613, 15brab2a 4664 . . 3  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
17 df-3an 975 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1816, 17bitr4i 186 . 2  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
194, 18bitrdi 195 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989   {copab 4049   ran crn 4612    |` cres 4613   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^pm cpm 6627   CCcc 7772   ZZ>=cuz 9487  TopOnctopon 12802   ~~> tclm 12981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pm 6629  df-top 12790  df-topon 12803  df-lm 12984
This theorem is referenced by:  lmbr2  13008  lmfpm  13037  lmcl  13039  lmff  13043
  Copyright terms: Public domain W3C validator