ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr Unicode version

Theorem lmbr 12163
Description: Express the binary relation "sequence  F converges to point  P " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC 
X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 12141. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
Assertion
Ref Expression
lmbr  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Distinct variable groups:    y, u, F   
u, J, y    ph, u    u, P    u, X, y
Allowed substitution hints:    ph( y)    P( y)

Proof of Theorem lmbr
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmfval 12143 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
31, 2syl 14 . . 3  |-  ( ph  ->  ( ~~> t `  J
)  =  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
43breqd 3886 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P
) )
5 reseq1 4749 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  |`  y )  =  ( F  |`  y
) )
65feq1d 5195 . . . . . . . 8  |-  ( f  =  F  ->  (
( f  |`  y
) : y --> u  <-> 
( F  |`  y
) : y --> u ) )
76rexbidv 2397 . . . . . . 7  |-  ( f  =  F  ->  ( E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u  <->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )
87imbi2d 229 . . . . . 6  |-  ( f  =  F  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
98ralbidv 2396 . . . . 5  |-  ( f  =  F  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
10 eleq1 2162 . . . . . . 7  |-  ( x  =  P  ->  (
x  e.  u  <->  P  e.  u ) )
1110imbi1d 230 . . . . . 6  |-  ( x  =  P  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <-> 
( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1211ralbidv 2396 . . . . 5  |-  ( x  =  P  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
139, 12sylan9bb 453 . . . 4  |-  ( ( f  =  F  /\  x  =  P )  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
14 df-3an 932 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1514opabbii 3935 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
1613, 15brab2a 4530 . . 3  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
17 df-3an 932 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1816, 17bitr4i 186 . 2  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
194, 18syl6bb 195 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   A.wral 2375   E.wrex 2376   class class class wbr 3875   {copab 3928   ran crn 4478    |` cres 4479   -->wf 5055   ` cfv 5059  (class class class)co 5706    ^pm cpm 6473   CCcc 7498   ZZ>=cuz 9176  TopOnctopon 11959   ~~> tclm 12138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-cnex 7586
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pm 6475  df-top 11947  df-topon 11960  df-lm 12141
This theorem is referenced by:  lmbr2  12164  lmfpm  12193  lmcl  12195  lmff  12199
  Copyright terms: Public domain W3C validator