| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmbr | Unicode version | ||
| Description: Express the binary
relation "sequence |
| Ref | Expression |
|---|---|
| lmbr.2 |
|
| Ref | Expression |
|---|---|
| lmbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmbr.2 |
. . . 4
| |
| 2 | lmfval 14697 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | breqd 4056 |
. 2
|
| 5 | reseq1 4954 |
. . . . . . . . 9
| |
| 6 | 5 | feq1d 5414 |
. . . . . . . 8
|
| 7 | 6 | rexbidv 2507 |
. . . . . . 7
|
| 8 | 7 | imbi2d 230 |
. . . . . 6
|
| 9 | 8 | ralbidv 2506 |
. . . . 5
|
| 10 | eleq1 2268 |
. . . . . . 7
| |
| 11 | 10 | imbi1d 231 |
. . . . . 6
|
| 12 | 11 | ralbidv 2506 |
. . . . 5
|
| 13 | 9, 12 | sylan9bb 462 |
. . . 4
|
| 14 | df-3an 983 |
. . . . 5
| |
| 15 | 14 | opabbii 4112 |
. . . 4
|
| 16 | 13, 15 | brab2a 4729 |
. . 3
|
| 17 | df-3an 983 |
. . 3
| |
| 18 | 16, 17 | bitr4i 187 |
. 2
|
| 19 | 4, 18 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pm 6740 df-top 14503 df-topon 14516 df-lm 14695 |
| This theorem is referenced by: lmbr2 14719 lmfpm 14748 lmcl 14750 lmff 14754 |
| Copyright terms: Public domain | W3C validator |