ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr Unicode version

Theorem lmbr 13264
Description: Express the binary relation "sequence  F converges to point  P " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC 
X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 13241. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
Assertion
Ref Expression
lmbr  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Distinct variable groups:    y, u, F   
u, J, y    ph, u    u, P    u, X, y
Allowed substitution hints:    ph( y)    P( y)

Proof of Theorem lmbr
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmfval 13243 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
31, 2syl 14 . . 3  |-  ( ph  ->  ( ~~> t `  J
)  =  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
43breqd 4009 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P
) )
5 reseq1 4894 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  |`  y )  =  ( F  |`  y
) )
65feq1d 5344 . . . . . . . 8  |-  ( f  =  F  ->  (
( f  |`  y
) : y --> u  <-> 
( F  |`  y
) : y --> u ) )
76rexbidv 2476 . . . . . . 7  |-  ( f  =  F  ->  ( E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u  <->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )
87imbi2d 230 . . . . . 6  |-  ( f  =  F  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
98ralbidv 2475 . . . . 5  |-  ( f  =  F  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
10 eleq1 2238 . . . . . . 7  |-  ( x  =  P  ->  (
x  e.  u  <->  P  e.  u ) )
1110imbi1d 231 . . . . . 6  |-  ( x  =  P  ->  (
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <-> 
( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1211ralbidv 2475 . . . . 5  |-  ( x  =  P  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
139, 12sylan9bb 462 . . . 4  |-  ( ( f  =  F  /\  x  =  P )  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
14 df-3an 980 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1514opabbii 4065 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
1613, 15brab2a 4673 . . 3  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
17 df-3an 980 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
1816, 17bitr4i 187 . 2  |-  ( F { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } P  <->  ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
194, 18bitrdi 196 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   class class class wbr 3998   {copab 4058   ran crn 4621    |` cres 4622   -->wf 5204   ` cfv 5208  (class class class)co 5865    ^pm cpm 6639   CCcc 7784   ZZ>=cuz 9499  TopOnctopon 13059   ~~> tclm 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pm 6641  df-top 13047  df-topon 13060  df-lm 13241
This theorem is referenced by:  lmbr2  13265  lmfpm  13294  lmcl  13296  lmff  13300
  Copyright terms: Public domain W3C validator