ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2shfti Unicode version

Theorem 2shfti 10635
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
2shfti  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )

Proof of Theorem 2shfti
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9  |-  F  e. 
_V
21shftfval 10625 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) } )
32breqd 3948 . . . . . . 7  |-  ( A  e.  CC  ->  (
( x  -  B
) ( F  shift  A ) y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
43ad2antrr 480 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
5 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  x  e.  CC )
6 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  B  e.  CC )
75, 6subcld 8097 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( x  -  B )  e.  CC )
8 vex 2692 . . . . . . 7  |-  y  e. 
_V
9 eleq1 2203 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
z  e.  CC  <->  ( x  -  B )  e.  CC ) )
10 oveq1 5789 . . . . . . . . . 10  |-  ( z  =  ( x  -  B )  ->  (
z  -  A )  =  ( ( x  -  B )  -  A ) )
1110breq1d 3947 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
( z  -  A
) F w  <->  ( (
x  -  B )  -  A ) F w ) )
129, 11anbi12d 465 . . . . . . . 8  |-  ( z  =  ( x  -  B )  ->  (
( z  e.  CC  /\  ( z  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w ) ) )
13 breq2 3941 . . . . . . . . 9  |-  ( w  =  y  ->  (
( ( x  -  B )  -  A
) F w  <->  ( (
x  -  B )  -  A ) F y ) )
1413anbi2d 460 . . . . . . . 8  |-  ( w  =  y  ->  (
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
15 eqid 2140 . . . . . . . 8  |-  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }
1612, 14, 15brabg 4199 . . . . . . 7  |-  ( ( ( x  -  B
)  e.  CC  /\  y  e.  _V )  ->  ( ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
177, 8, 16sylancl 410 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) {
<. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
184, 17bitrd 187 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
19 subcl 7985 . . . . . . . 8  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( x  -  B
)  e.  CC )
2019biantrurd 303 . . . . . . 7  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2120ancoms 266 . . . . . 6  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2221adantll 468 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
23 sub32 8020 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( ( x  -  B )  -  A ) )
24 subsub4 8019 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( x  -  ( A  +  B
) ) )
2523, 24eqtr3d 2175 . . . . . . . 8  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  B
)  -  A )  =  ( x  -  ( A  +  B
) ) )
26253expb 1183 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
x  -  B )  -  A )  =  ( x  -  ( A  +  B )
) )
2726ancoms 266 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B )  -  A )  =  ( x  -  ( A  +  B ) ) )
2827breq1d 3947 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( x  -  ( A  +  B
) ) F y ) )
2918, 22, 283bitr2d 215 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  ( A  +  B
) ) F y ) )
3029pm5.32da 448 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y )  <->  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) ) )
3130opabbidv 4002 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) }  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
32 ovshftex 10623 . . . . 5  |-  ( ( F  e.  _V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
331, 32mpan 421 . . . 4  |-  ( A  e.  CC  ->  ( F  shift  A )  e. 
_V )
34 shftfvalg 10622 . . . 4  |-  ( ( B  e.  CC  /\  ( F  shift  A )  e.  _V )  -> 
( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3533, 34sylan2 284 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3635ancoms 266 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
37 addcl 7769 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
381shftfval 10625 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
3937, 38syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B )
) F y ) } )
4031, 36, 393eqtr4d 2183 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937   {copab 3996  (class class class)co 5782   CCcc 7642    + caddc 7647    - cmin 7957    shift cshi 10618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959  df-shft 10619
This theorem is referenced by:  shftcan1  10638
  Copyright terms: Public domain W3C validator