Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2shfti | Unicode version |
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 |
Ref | Expression |
---|---|
2shfti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . . . . . . 9 | |
2 | 1 | shftfval 10785 | . . . . . . . 8 |
3 | 2 | breqd 4000 | . . . . . . 7 |
4 | 3 | ad2antrr 485 | . . . . . 6 |
5 | simpr 109 | . . . . . . . 8 | |
6 | simplr 525 | . . . . . . . 8 | |
7 | 5, 6 | subcld 8230 | . . . . . . 7 |
8 | vex 2733 | . . . . . . 7 | |
9 | eleq1 2233 | . . . . . . . . 9 | |
10 | oveq1 5860 | . . . . . . . . . 10 | |
11 | 10 | breq1d 3999 | . . . . . . . . 9 |
12 | 9, 11 | anbi12d 470 | . . . . . . . 8 |
13 | breq2 3993 | . . . . . . . . 9 | |
14 | 13 | anbi2d 461 | . . . . . . . 8 |
15 | eqid 2170 | . . . . . . . 8 | |
16 | 12, 14, 15 | brabg 4254 | . . . . . . 7 |
17 | 7, 8, 16 | sylancl 411 | . . . . . 6 |
18 | 4, 17 | bitrd 187 | . . . . 5 |
19 | subcl 8118 | . . . . . . . 8 | |
20 | 19 | biantrurd 303 | . . . . . . 7 |
21 | 20 | ancoms 266 | . . . . . 6 |
22 | 21 | adantll 473 | . . . . 5 |
23 | sub32 8153 | . . . . . . . . 9 | |
24 | subsub4 8152 | . . . . . . . . 9 | |
25 | 23, 24 | eqtr3d 2205 | . . . . . . . 8 |
26 | 25 | 3expb 1199 | . . . . . . 7 |
27 | 26 | ancoms 266 | . . . . . 6 |
28 | 27 | breq1d 3999 | . . . . 5 |
29 | 18, 22, 28 | 3bitr2d 215 | . . . 4 |
30 | 29 | pm5.32da 449 | . . 3 |
31 | 30 | opabbidv 4055 | . 2 |
32 | ovshftex 10783 | . . . . 5 | |
33 | 1, 32 | mpan 422 | . . . 4 |
34 | shftfvalg 10782 | . . . 4 | |
35 | 33, 34 | sylan2 284 | . . 3 |
36 | 35 | ancoms 266 | . 2 |
37 | addcl 7899 | . . 3 | |
38 | 1 | shftfval 10785 | . . 3 |
39 | 37, 38 | syl 14 | . 2 |
40 | 31, 36, 39 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cvv 2730 class class class wbr 3989 copab 4049 (class class class)co 5853 cc 7772 caddc 7777 cmin 8090 cshi 10778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-shft 10779 |
This theorem is referenced by: shftcan1 10798 |
Copyright terms: Public domain | W3C validator |