| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2shfti | Unicode version | ||
| Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 |
|
| Ref | Expression |
|---|---|
| 2shfti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 |
. . . . . . . . 9
| |
| 2 | 1 | shftfval 11247 |
. . . . . . . 8
|
| 3 | 2 | breqd 4070 |
. . . . . . 7
|
| 4 | 3 | ad2antrr 488 |
. . . . . 6
|
| 5 | simpr 110 |
. . . . . . . 8
| |
| 6 | simplr 528 |
. . . . . . . 8
| |
| 7 | 5, 6 | subcld 8418 |
. . . . . . 7
|
| 8 | vex 2779 |
. . . . . . 7
| |
| 9 | eleq1 2270 |
. . . . . . . . 9
| |
| 10 | oveq1 5974 |
. . . . . . . . . 10
| |
| 11 | 10 | breq1d 4069 |
. . . . . . . . 9
|
| 12 | 9, 11 | anbi12d 473 |
. . . . . . . 8
|
| 13 | breq2 4063 |
. . . . . . . . 9
| |
| 14 | 13 | anbi2d 464 |
. . . . . . . 8
|
| 15 | eqid 2207 |
. . . . . . . 8
| |
| 16 | 12, 14, 15 | brabg 4333 |
. . . . . . 7
|
| 17 | 7, 8, 16 | sylancl 413 |
. . . . . 6
|
| 18 | 4, 17 | bitrd 188 |
. . . . 5
|
| 19 | subcl 8306 |
. . . . . . . 8
| |
| 20 | 19 | biantrurd 305 |
. . . . . . 7
|
| 21 | 20 | ancoms 268 |
. . . . . 6
|
| 22 | 21 | adantll 476 |
. . . . 5
|
| 23 | sub32 8341 |
. . . . . . . . 9
| |
| 24 | subsub4 8340 |
. . . . . . . . 9
| |
| 25 | 23, 24 | eqtr3d 2242 |
. . . . . . . 8
|
| 26 | 25 | 3expb 1207 |
. . . . . . 7
|
| 27 | 26 | ancoms 268 |
. . . . . 6
|
| 28 | 27 | breq1d 4069 |
. . . . 5
|
| 29 | 18, 22, 28 | 3bitr2d 216 |
. . . 4
|
| 30 | 29 | pm5.32da 452 |
. . 3
|
| 31 | 30 | opabbidv 4126 |
. 2
|
| 32 | ovshftex 11245 |
. . . . 5
| |
| 33 | 1, 32 | mpan 424 |
. . . 4
|
| 34 | shftfvalg 11244 |
. . . 4
| |
| 35 | 33, 34 | sylan2 286 |
. . 3
|
| 36 | 35 | ancoms 268 |
. 2
|
| 37 | addcl 8085 |
. . 3
| |
| 38 | 1 | shftfval 11247 |
. . 3
|
| 39 | 37, 38 | syl 14 |
. 2
|
| 40 | 31, 36, 39 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-shft 11241 |
| This theorem is referenced by: shftcan1 11260 |
| Copyright terms: Public domain | W3C validator |