ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2shfti Unicode version

Theorem 2shfti 11013
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
2shfti  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )

Proof of Theorem 2shfti
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9  |-  F  e. 
_V
21shftfval 11003 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) } )
32breqd 4045 . . . . . . 7  |-  ( A  e.  CC  ->  (
( x  -  B
) ( F  shift  A ) y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
43ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
5 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  x  e.  CC )
6 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  B  e.  CC )
75, 6subcld 8354 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( x  -  B )  e.  CC )
8 vex 2766 . . . . . . 7  |-  y  e. 
_V
9 eleq1 2259 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
z  e.  CC  <->  ( x  -  B )  e.  CC ) )
10 oveq1 5932 . . . . . . . . . 10  |-  ( z  =  ( x  -  B )  ->  (
z  -  A )  =  ( ( x  -  B )  -  A ) )
1110breq1d 4044 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
( z  -  A
) F w  <->  ( (
x  -  B )  -  A ) F w ) )
129, 11anbi12d 473 . . . . . . . 8  |-  ( z  =  ( x  -  B )  ->  (
( z  e.  CC  /\  ( z  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w ) ) )
13 breq2 4038 . . . . . . . . 9  |-  ( w  =  y  ->  (
( ( x  -  B )  -  A
) F w  <->  ( (
x  -  B )  -  A ) F y ) )
1413anbi2d 464 . . . . . . . 8  |-  ( w  =  y  ->  (
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
15 eqid 2196 . . . . . . . 8  |-  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }
1612, 14, 15brabg 4304 . . . . . . 7  |-  ( ( ( x  -  B
)  e.  CC  /\  y  e.  _V )  ->  ( ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
177, 8, 16sylancl 413 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) {
<. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
184, 17bitrd 188 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
19 subcl 8242 . . . . . . . 8  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( x  -  B
)  e.  CC )
2019biantrurd 305 . . . . . . 7  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2120ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2221adantll 476 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
23 sub32 8277 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( ( x  -  B )  -  A ) )
24 subsub4 8276 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( x  -  ( A  +  B
) ) )
2523, 24eqtr3d 2231 . . . . . . . 8  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  B
)  -  A )  =  ( x  -  ( A  +  B
) ) )
26253expb 1206 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
x  -  B )  -  A )  =  ( x  -  ( A  +  B )
) )
2726ancoms 268 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B )  -  A )  =  ( x  -  ( A  +  B ) ) )
2827breq1d 4044 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( x  -  ( A  +  B
) ) F y ) )
2918, 22, 283bitr2d 216 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  ( A  +  B
) ) F y ) )
3029pm5.32da 452 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y )  <->  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) ) )
3130opabbidv 4100 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) }  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
32 ovshftex 11001 . . . . 5  |-  ( ( F  e.  _V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
331, 32mpan 424 . . . 4  |-  ( A  e.  CC  ->  ( F  shift  A )  e. 
_V )
34 shftfvalg 11000 . . . 4  |-  ( ( B  e.  CC  /\  ( F  shift  A )  e.  _V )  -> 
( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3533, 34sylan2 286 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3635ancoms 268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
37 addcl 8021 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
381shftfval 11003 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
3937, 38syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B )
) F y ) } )
4031, 36, 393eqtr4d 2239 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034   {copab 4094  (class class class)co 5925   CCcc 7894    + caddc 7899    - cmin 8214    shift cshi 10996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-shft 10997
This theorem is referenced by:  shftcan1  11016
  Copyright terms: Public domain W3C validator