ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2shfti Unicode version

Theorem 2shfti 10603
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
2shfti  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )

Proof of Theorem 2shfti
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . . . 9  |-  F  e. 
_V
21shftfval 10593 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A ) F w ) } )
32breqd 3940 . . . . . . 7  |-  ( A  e.  CC  ->  (
( x  -  B
) ( F  shift  A ) y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
43ad2antrr 479 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y ) )
5 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  x  e.  CC )
6 simplr 519 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  B  e.  CC )
75, 6subcld 8073 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( x  -  B )  e.  CC )
8 vex 2689 . . . . . . 7  |-  y  e. 
_V
9 eleq1 2202 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
z  e.  CC  <->  ( x  -  B )  e.  CC ) )
10 oveq1 5781 . . . . . . . . . 10  |-  ( z  =  ( x  -  B )  ->  (
z  -  A )  =  ( ( x  -  B )  -  A ) )
1110breq1d 3939 . . . . . . . . 9  |-  ( z  =  ( x  -  B )  ->  (
( z  -  A
) F w  <->  ( (
x  -  B )  -  A ) F w ) )
129, 11anbi12d 464 . . . . . . . 8  |-  ( z  =  ( x  -  B )  ->  (
( z  e.  CC  /\  ( z  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w ) ) )
13 breq2 3933 . . . . . . . . 9  |-  ( w  =  y  ->  (
( ( x  -  B )  -  A
) F w  <->  ( (
x  -  B )  -  A ) F y ) )
1413anbi2d 459 . . . . . . . 8  |-  ( w  =  y  ->  (
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F w )  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
15 eqid 2139 . . . . . . . 8  |-  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }  =  { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) }
1612, 14, 15brabg 4191 . . . . . . 7  |-  ( ( ( x  -  B
)  e.  CC  /\  y  e.  _V )  ->  ( ( x  -  B ) { <. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
177, 8, 16sylancl 409 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) {
<. z ,  w >.  |  ( z  e.  CC  /\  ( z  -  A
) F w ) } y  <->  ( (
x  -  B )  e.  CC  /\  (
( x  -  B
)  -  A ) F y ) ) )
184, 17bitrd 187 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
19 subcl 7961 . . . . . . . 8  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( x  -  B
)  e.  CC )
2019biantrurd 303 . . . . . . 7  |-  ( ( x  e.  CC  /\  B  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2120ancoms 266 . . . . . 6  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <-> 
( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A
) F y ) ) )
2221adantll 467 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( ( x  -  B )  e.  CC  /\  ( ( x  -  B )  -  A ) F y ) ) )
23 sub32 7996 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( ( x  -  B )  -  A ) )
24 subsub4 7995 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  A
)  -  B )  =  ( x  -  ( A  +  B
) ) )
2523, 24eqtr3d 2174 . . . . . . . 8  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( x  -  B
)  -  A )  =  ( x  -  ( A  +  B
) ) )
26253expb 1182 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  ( (
x  -  B )  -  A )  =  ( x  -  ( A  +  B )
) )
2726ancoms 266 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B )  -  A )  =  ( x  -  ( A  +  B ) ) )
2827breq1d 3939 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( ( x  -  B )  -  A ) F y  <->  ( x  -  ( A  +  B
) ) F y ) )
2918, 22, 283bitr2d 215 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  x  e.  CC )  ->  ( ( x  -  B ) ( F  shift  A )
y  <->  ( x  -  ( A  +  B
) ) F y ) )
3029pm5.32da 447 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y )  <->  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) ) )
3130opabbidv 3994 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) }  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
32 ovshftex 10591 . . . . 5  |-  ( ( F  e.  _V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
331, 32mpan 420 . . . 4  |-  ( A  e.  CC  ->  ( F  shift  A )  e. 
_V )
34 shftfvalg 10590 . . . 4  |-  ( ( B  e.  CC  /\  ( F  shift  A )  e.  _V )  -> 
( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3533, 34sylan2 284 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
3635ancoms 266 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  B ) ( F  shift  A )
y ) } )
37 addcl 7745 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
381shftfval 10593 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B ) ) F y ) } )
3937, 38syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F  shift  ( A  +  B ) )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  ( A  +  B )
) F y ) } )
4031, 36, 393eqtr4d 2182 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A )  shift  B )  =  ( F  shift  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929   {copab 3988  (class class class)co 5774   CCcc 7618    + caddc 7623    - cmin 7933    shift cshi 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-shft 10587
This theorem is referenced by:  shftcan1  10606
  Copyright terms: Public domain W3C validator