Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2shfti | Unicode version |
Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 |
Ref | Expression |
---|---|
2shfti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . . . . . . 9 | |
2 | 1 | shftfval 10763 | . . . . . . . 8 |
3 | 2 | breqd 3993 | . . . . . . 7 |
4 | 3 | ad2antrr 480 | . . . . . 6 |
5 | simpr 109 | . . . . . . . 8 | |
6 | simplr 520 | . . . . . . . 8 | |
7 | 5, 6 | subcld 8209 | . . . . . . 7 |
8 | vex 2729 | . . . . . . 7 | |
9 | eleq1 2229 | . . . . . . . . 9 | |
10 | oveq1 5849 | . . . . . . . . . 10 | |
11 | 10 | breq1d 3992 | . . . . . . . . 9 |
12 | 9, 11 | anbi12d 465 | . . . . . . . 8 |
13 | breq2 3986 | . . . . . . . . 9 | |
14 | 13 | anbi2d 460 | . . . . . . . 8 |
15 | eqid 2165 | . . . . . . . 8 | |
16 | 12, 14, 15 | brabg 4247 | . . . . . . 7 |
17 | 7, 8, 16 | sylancl 410 | . . . . . 6 |
18 | 4, 17 | bitrd 187 | . . . . 5 |
19 | subcl 8097 | . . . . . . . 8 | |
20 | 19 | biantrurd 303 | . . . . . . 7 |
21 | 20 | ancoms 266 | . . . . . 6 |
22 | 21 | adantll 468 | . . . . 5 |
23 | sub32 8132 | . . . . . . . . 9 | |
24 | subsub4 8131 | . . . . . . . . 9 | |
25 | 23, 24 | eqtr3d 2200 | . . . . . . . 8 |
26 | 25 | 3expb 1194 | . . . . . . 7 |
27 | 26 | ancoms 266 | . . . . . 6 |
28 | 27 | breq1d 3992 | . . . . 5 |
29 | 18, 22, 28 | 3bitr2d 215 | . . . 4 |
30 | 29 | pm5.32da 448 | . . 3 |
31 | 30 | opabbidv 4048 | . 2 |
32 | ovshftex 10761 | . . . . 5 | |
33 | 1, 32 | mpan 421 | . . . 4 |
34 | shftfvalg 10760 | . . . 4 | |
35 | 33, 34 | sylan2 284 | . . 3 |
36 | 35 | ancoms 266 | . 2 |
37 | addcl 7878 | . . 3 | |
38 | 1 | shftfval 10763 | . . 3 |
39 | 37, 38 | syl 14 | . 2 |
40 | 31, 36, 39 | 3eqtr4d 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 copab 4042 (class class class)co 5842 cc 7751 caddc 7756 cmin 8069 cshi 10756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-shft 10757 |
This theorem is referenced by: shftcan1 10776 |
Copyright terms: Public domain | W3C validator |