| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2shfti | Unicode version | ||
| Description: Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 |
|
| Ref | Expression |
|---|---|
| 2shfti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 |
. . . . . . . . 9
| |
| 2 | 1 | shftfval 11132 |
. . . . . . . 8
|
| 3 | 2 | breqd 4055 |
. . . . . . 7
|
| 4 | 3 | ad2antrr 488 |
. . . . . 6
|
| 5 | simpr 110 |
. . . . . . . 8
| |
| 6 | simplr 528 |
. . . . . . . 8
| |
| 7 | 5, 6 | subcld 8383 |
. . . . . . 7
|
| 8 | vex 2775 |
. . . . . . 7
| |
| 9 | eleq1 2268 |
. . . . . . . . 9
| |
| 10 | oveq1 5951 |
. . . . . . . . . 10
| |
| 11 | 10 | breq1d 4054 |
. . . . . . . . 9
|
| 12 | 9, 11 | anbi12d 473 |
. . . . . . . 8
|
| 13 | breq2 4048 |
. . . . . . . . 9
| |
| 14 | 13 | anbi2d 464 |
. . . . . . . 8
|
| 15 | eqid 2205 |
. . . . . . . 8
| |
| 16 | 12, 14, 15 | brabg 4315 |
. . . . . . 7
|
| 17 | 7, 8, 16 | sylancl 413 |
. . . . . 6
|
| 18 | 4, 17 | bitrd 188 |
. . . . 5
|
| 19 | subcl 8271 |
. . . . . . . 8
| |
| 20 | 19 | biantrurd 305 |
. . . . . . 7
|
| 21 | 20 | ancoms 268 |
. . . . . 6
|
| 22 | 21 | adantll 476 |
. . . . 5
|
| 23 | sub32 8306 |
. . . . . . . . 9
| |
| 24 | subsub4 8305 |
. . . . . . . . 9
| |
| 25 | 23, 24 | eqtr3d 2240 |
. . . . . . . 8
|
| 26 | 25 | 3expb 1207 |
. . . . . . 7
|
| 27 | 26 | ancoms 268 |
. . . . . 6
|
| 28 | 27 | breq1d 4054 |
. . . . 5
|
| 29 | 18, 22, 28 | 3bitr2d 216 |
. . . 4
|
| 30 | 29 | pm5.32da 452 |
. . 3
|
| 31 | 30 | opabbidv 4110 |
. 2
|
| 32 | ovshftex 11130 |
. . . . 5
| |
| 33 | 1, 32 | mpan 424 |
. . . 4
|
| 34 | shftfvalg 11129 |
. . . 4
| |
| 35 | 33, 34 | sylan2 286 |
. . 3
|
| 36 | 35 | ancoms 268 |
. 2
|
| 37 | addcl 8050 |
. . 3
| |
| 38 | 1 | shftfval 11132 |
. . 3
|
| 39 | 37, 38 | syl 14 |
. 2
|
| 40 | 31, 36, 39 | 3eqtr4d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-shft 11126 |
| This theorem is referenced by: shftcan1 11145 |
| Copyright terms: Public domain | W3C validator |