![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqi | Unicode version |
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
breqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq 3847 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 df-br 3846 |
This theorem is referenced by: f1ompt 5450 brtpos2 6016 tfrexlem 6099 brdifun 6319 ltpiord 6878 ltxrlt 7552 ltxr 9246 |
Copyright terms: Public domain | W3C validator |