ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqi Unicode version

Theorem breqi 4065
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.)
Hypothesis
Ref Expression
breqi.1  |-  R  =  S
Assertion
Ref Expression
breqi  |-  ( A R B  <->  A S B )

Proof of Theorem breqi
StepHypRef Expression
1 breqi.1 . 2  |-  R  =  S
2 breq 4061 . 2  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )
31, 2ax-mp 5 1  |-  ( A R B  <->  A S B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203  df-br 4060
This theorem is referenced by:  f1ompt  5754  brtpos2  6360  tfrexlem  6443  brdifun  6670  ltpiord  7467  ltxrlt  8173  ltxr  9932  xmeterval  15022
  Copyright terms: Public domain W3C validator