| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqi | Unicode version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 |
|
| Ref | Expression |
|---|---|
| breqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 |
. 2
| |
| 2 | breq 4047 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-br 4046 |
| This theorem is referenced by: f1ompt 5733 brtpos2 6339 tfrexlem 6422 brdifun 6649 ltpiord 7434 ltxrlt 8140 ltxr 9899 xmeterval 14940 |
| Copyright terms: Public domain | W3C validator |