ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrexlem Unicode version

Theorem tfrexlem 6329
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrexlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrexlem.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrexlem  |-  ( (
ph  /\  C  e.  V )  ->  (recs ( F ) `  C
)  e.  _V )
Distinct variable groups:    x, f, y, A    f, F, x, y
Allowed substitution hints:    ph( x, y, f)    C( x, y, f)    V( x, y, f)

Proof of Theorem tfrexlem
Dummy variables  e  g  h  u  v  t  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5511 . . . . 5  |-  ( z  =  C  ->  (recs ( F ) `  z
)  =  (recs ( F ) `  C
) )
21eleq1d 2246 . . . 4  |-  ( z  =  C  ->  (
(recs ( F ) `
 z )  e. 
_V 
<->  (recs ( F ) `
 C )  e. 
_V ) )
32imbi2d 230 . . 3  |-  ( z  =  C  ->  (
( ph  ->  (recs ( F ) `  z
)  e.  _V )  <->  (
ph  ->  (recs ( F ) `  C )  e.  _V ) ) )
4 inss2 3356 . . . . . . 7  |-  ( suc 
suc  z  i^i  On )  C_  On
5 ssorduni 4483 . . . . . . 7  |-  ( ( suc  suc  z  i^i  On )  C_  On  ->  Ord  U. ( suc  suc  z  i^i  On ) )
64, 5ax-mp 5 . . . . . 6  |-  Ord  U. ( suc  suc  z  i^i  On )
7 vex 2740 . . . . . . . . . 10  |-  z  e. 
_V
87sucex 4495 . . . . . . . . 9  |-  suc  z  e.  _V
98sucex 4495 . . . . . . . 8  |-  suc  suc  z  e.  _V
109inex1 4134 . . . . . . 7  |-  ( suc 
suc  z  i^i  On )  e.  _V
1110uniex 4434 . . . . . 6  |-  U. ( suc  suc  z  i^i  On )  e.  _V
12 elon2 4373 . . . . . 6  |-  ( U. ( suc  suc  z  i^i  On )  e.  On  <->  ( Ord  U. ( suc  suc  z  i^i  On )  /\  U. ( suc  suc  z  i^i  On )  e.  _V )
)
136, 11, 12mpbir2an 942 . . . . 5  |-  U. ( suc  suc  z  i^i  On )  e.  On
14 tfrexlem.1 . . . . . . 7  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
1514tfrlem3 6306 . . . . . 6  |-  A  =  { v  |  E. z  e.  On  (
v  Fn  z  /\  A. u  e.  z  ( v `  u )  =  ( F `  ( v  |`  u
) ) ) }
16 tfrexlem.2 . . . . . . 7  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
17 fveq2 5511 . . . . . . . . . 10  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1817eleq1d 2246 . . . . . . . . 9  |-  ( x  =  z  ->  (
( F `  x
)  e.  _V  <->  ( F `  z )  e.  _V ) )
1918anbi2d 464 . . . . . . . 8  |-  ( x  =  z  ->  (
( Fun  F  /\  ( F `  x )  e.  _V )  <->  ( Fun  F  /\  ( F `  z )  e.  _V ) ) )
2019cbvalv 1917 . . . . . . 7  |-  ( A. x ( Fun  F  /\  ( F `  x
)  e.  _V )  <->  A. z ( Fun  F  /\  ( F `  z
)  e.  _V )
)
2116, 20sylib 122 . . . . . 6  |-  ( ph  ->  A. z ( Fun 
F  /\  ( F `  z )  e.  _V ) )
2215, 21tfrlemi1 6327 . . . . 5  |-  ( (
ph  /\  U. ( suc  suc  z  i^i  On )  e.  On )  ->  E. g ( g  Fn  U. ( suc 
suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )
2313, 22mpan2 425 . . . 4  |-  ( ph  ->  E. g ( g  Fn  U. ( suc 
suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )
2415recsfval 6310 . . . . . . . . . . 11  |- recs ( F )  =  U. A
2524breqi 4006 . . . . . . . . . 10  |-  ( zrecs ( F ) y  <-> 
z U. A y )
26 df-br 4001 . . . . . . . . . 10  |-  ( z U. A y  <->  <. z ,  y >.  e.  U. A
)
27 eluni 3810 . . . . . . . . . 10  |-  ( <.
z ,  y >.  e.  U. A  <->  E. h
( <. z ,  y
>.  e.  h  /\  h  e.  A ) )
2825, 26, 273bitri 206 . . . . . . . . 9  |-  ( zrecs ( F ) y  <->  E. h ( <. z ,  y >.  e.  h  /\  h  e.  A
) )
297sucid 4414 . . . . . . . . . . . . . . . . 17  |-  z  e. 
suc  z
30 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
<. z ,  y >.  e.  h  /\  h  e.  A )  ->  h  e.  A )
31 vex 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  h  e. 
_V
3214, 31tfrlem3a 6305 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( h  e.  A  <->  E. t  e.  On  ( h  Fn  t  /\  A. e  e.  t  ( h `  e )  =  ( F `  ( h  |`  e ) ) ) )
3330, 32sylib 122 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
<. z ,  y >.  e.  h  /\  h  e.  A )  ->  E. t  e.  On  ( h  Fn  t  /\  A. e  e.  t  ( h `  e )  =  ( F `  ( h  |`  e ) ) ) )
34 simprl 529 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( <. z ,  y
>.  e.  h  /\  h  e.  A )  /\  (
t  e.  On  /\  ( h  Fn  t  /\  A. e  e.  t  ( h `  e
)  =  ( F `
 ( h  |`  e ) ) ) ) )  ->  t  e.  On )
35 simprrl 539 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( <. z ,  y
>.  e.  h  /\  h  e.  A )  /\  (
t  e.  On  /\  ( h  Fn  t  /\  A. e  e.  t  ( h `  e
)  =  ( F `
 ( h  |`  e ) ) ) ) )  ->  h  Fn  t )
36 simpll 527 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( <. z ,  y
>.  e.  h  /\  h  e.  A )  /\  (
t  e.  On  /\  ( h  Fn  t  /\  A. e  e.  t  ( h `  e
)  =  ( F `
 ( h  |`  e ) ) ) ) )  ->  <. z ,  y >.  e.  h
)
37 fnop 5315 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( h  Fn  t  /\  <.
z ,  y >.  e.  h )  ->  z  e.  t )
3835, 36, 37syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( <. z ,  y
>.  e.  h  /\  h  e.  A )  /\  (
t  e.  On  /\  ( h  Fn  t  /\  A. e  e.  t  ( h `  e
)  =  ( F `
 ( h  |`  e ) ) ) ) )  ->  z  e.  t )
39 onelon 4381 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( t  e.  On  /\  z  e.  t )  ->  z  e.  On )
4034, 38, 39syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( <. z ,  y
>.  e.  h  /\  h  e.  A )  /\  (
t  e.  On  /\  ( h  Fn  t  /\  A. e  e.  t  ( h `  e
)  =  ( F `
 ( h  |`  e ) ) ) ) )  ->  z  e.  On )
4133, 40rexlimddv 2599 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
<. z ,  y >.  e.  h  /\  h  e.  A )  ->  z  e.  On )
4241adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
z  e.  On )
43 onsuc 4497 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  On  ->  suc  z  e.  On )
4442, 43syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  suc  z  e.  On )
45 onsuc 4497 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( suc  z  e.  On  ->  suc 
suc  z  e.  On )
4644, 45syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  suc  suc  z  e.  On )
47 onss 4489 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
suc  z  e.  On  ->  suc  suc  z  C_  On )
4846, 47syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  suc  suc  z  C_  On )
49 df-ss 3142 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
suc  z  C_  On  <->  ( suc  suc  z  i^i  On )  =  suc  suc  z )
5048, 49sylib 122 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
( suc  suc  z  i^i 
On )  =  suc  suc  z )
5150unieqd 3818 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  U. ( suc  suc  z  i^i  On )  =  U. suc  suc  z )
52 eloni 4372 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc  z  e.  On  ->  Ord 
suc  z )
53 ordtr 4375 . . . . . . . . . . . . . . . . . . . 20  |-  ( Ord 
suc  z  ->  Tr  suc  z )
5444, 52, 533syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  Tr  suc  z )
558unisuc 4410 . . . . . . . . . . . . . . . . . . 19  |-  ( Tr 
suc  z  <->  U. suc  suc  z  =  suc  z )
5654, 55sylib 122 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  U. suc  suc  z  =  suc  z )
5751, 56eqtrd 2210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  U. ( suc  suc  z  i^i  On )  =  suc  z )
5829, 57eleqtrrid 2267 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
z  e.  U. ( suc  suc  z  i^i  On ) )
59 fndm 5311 . . . . . . . . . . . . . . . . 17  |-  ( g  Fn  U. ( suc 
suc  z  i^i  On )  ->  dom  g  =  U. ( suc  suc  z  i^i  On ) )
6059ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  dom  g  =  U. ( suc  suc  z  i^i  On ) )
6158, 60eleqtrrd 2257 . . . . . . . . . . . . . . 15  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
z  e.  dom  g
)
627eldm 4820 . . . . . . . . . . . . . . 15  |-  ( z  e.  dom  g  <->  E. x  z g x )
6361, 62sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  ->  E. x  z g
x )
64 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  -> 
z g x )
65 fneq2 5301 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  U. ( suc 
suc  z  i^i  On )  ->  ( g  Fn  v  <->  g  Fn  U. ( suc  suc  z  i^i  On ) ) )
66 raleq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  U. ( suc 
suc  z  i^i  On )  ->  ( A. w  e.  v  ( g `  w )  =  ( F `  ( g  |`  w ) )  <->  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )
6765, 66anbi12d 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  U. ( suc 
suc  z  i^i  On )  ->  ( ( g  Fn  v  /\  A. w  e.  v  (
g `  w )  =  ( F `  ( g  |`  w
) ) )  <->  ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) ) ) )
6867rspcev 2841 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U. ( suc  suc  z  i^i  On )  e.  On  /\  ( g  Fn  U. ( suc 
suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  E. v  e.  On  ( g  Fn  v  /\  A. w  e.  v  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) ) )
6913, 68mpan 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  E. v  e.  On  ( g  Fn  v  /\  A. w  e.  v  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) ) )
70 vex 2740 . . . . . . . . . . . . . . . . . . 19  |-  g  e. 
_V
7114, 70tfrlem3a 6305 . . . . . . . . . . . . . . . . . 18  |-  ( g  e.  A  <->  E. v  e.  On  ( g  Fn  v  /\  A. w  e.  v  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
7269, 71sylibr 134 . . . . . . . . . . . . . . . . 17  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
g  e.  A )
7372ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  -> 
g  e.  A )
74 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  ->  h  e.  A )
75 simplrl 535 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  ->  <. z ,  y >.  e.  h )
76 df-br 4001 . . . . . . . . . . . . . . . . 17  |-  ( z h y  <->  <. z ,  y >.  e.  h
)
7775, 76sylibr 134 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  -> 
z h y )
7815tfrlem5 6309 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( z g x  /\  z h y )  ->  x  =  y ) )
7978imp 124 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  e.  A  /\  h  e.  A
)  /\  ( z
g x  /\  z
h y ) )  ->  x  =  y )
8073, 74, 64, 77, 79syl22anc 1239 . . . . . . . . . . . . . . 15  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  ->  x  =  y )
8164, 80breqtrd 4026 . . . . . . . . . . . . . 14  |-  ( ( ( ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  /\  ( <. z ,  y >.  e.  h  /\  h  e.  A
) )  /\  z
g x )  -> 
z g y )
8263, 81exlimddv 1898 . . . . . . . . . . . . 13  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
z g y )
83 vex 2740 . . . . . . . . . . . . . 14  |-  y  e. 
_V
847, 83brelrn 4856 . . . . . . . . . . . . 13  |-  ( z g y  ->  y  e.  ran  g )
8582, 84syl 14 . . . . . . . . . . . 12  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
y  e.  ran  g
)
86 elssuni 3835 . . . . . . . . . . . 12  |-  ( y  e.  ran  g  -> 
y  C_  U. ran  g
)
8785, 86syl 14 . . . . . . . . . . 11  |-  ( ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  /\  ( <. z ,  y
>.  e.  h  /\  h  e.  A ) )  -> 
y  C_  U. ran  g
)
8887ex 115 . . . . . . . . . 10  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( ( <. z ,  y >.  e.  h  /\  h  e.  A
)  ->  y  C_  U.
ran  g ) )
8988exlimdv 1819 . . . . . . . . 9  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( E. h (
<. z ,  y >.  e.  h  /\  h  e.  A )  ->  y  C_ 
U. ran  g )
)
9028, 89biimtrid 152 . . . . . . . 8  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( zrecs ( F ) y  ->  y  C_ 
U. ran  g )
)
9190alrimiv 1874 . . . . . . 7  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  A. y ( zrecs ( F ) y  -> 
y  C_  U. ran  g
) )
92 fvss 5525 . . . . . . 7  |-  ( A. y ( zrecs ( F ) y  -> 
y  C_  U. ran  g
)  ->  (recs ( F ) `  z
)  C_  U. ran  g
)
9391, 92syl 14 . . . . . 6  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
(recs ( F ) `
 z )  C_  U.
ran  g )
9470rnex 4890 . . . . . . . 8  |-  ran  g  e.  _V
9594uniex 4434 . . . . . . 7  |-  U. ran  g  e.  _V
9695ssex 4137 . . . . . 6  |-  ( (recs ( F ) `  z )  C_  U. ran  g  ->  (recs ( F ) `  z )  e.  _V )
9793, 96syl 14 . . . . 5  |-  ( ( g  Fn  U. ( suc  suc  z  i^i  On )  /\  A. w  e. 
U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
(recs ( F ) `
 z )  e. 
_V )
9897exlimiv 1598 . . . 4  |-  ( E. g ( g  Fn 
U. ( suc  suc  z  i^i  On )  /\  A. w  e.  U. ( suc  suc  z  i^i  On ) ( g `  w )  =  ( F `  ( g  |`  w ) ) )  ->  (recs ( F ) `  z )  e.  _V )
9923, 98syl 14 . . 3  |-  ( ph  ->  (recs ( F ) `
 z )  e. 
_V )
1003, 99vtoclg 2797 . 2  |-  ( C  e.  V  ->  ( ph  ->  (recs ( F ) `  C )  e.  _V ) )
101100impcom 125 1  |-  ( (
ph  /\  C  e.  V )  ->  (recs ( F ) `  C
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2737    i^i cin 3128    C_ wss 3129   <.cop 3594   U.cuni 3807   class class class wbr 4000   Tr wtr 4098   Ord word 4359   Oncon0 4360   suc csuc 4362   dom cdm 4623   ran crn 4624    |` cres 4625   Fun wfun 5206    Fn wfn 5207   ` cfv 5212  recscrecs 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-recs 6300
This theorem is referenced by:  tfrex  6363
  Copyright terms: Public domain W3C validator