| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) | 
| Ref | Expression | 
|---|---|
| breq1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| breq1i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1i.1 | 
. 2
 | |
| 2 | breq1 4036 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: eqbrtri 4054 brtpos0 6310 euen1 6861 euen1b 6862 2dom 6864 infglbti 7091 pr2nelem 7258 caucvgprprlemnbj 7760 caucvgprprlemmu 7762 caucvgprprlemaddq 7775 caucvgprprlem1 7776 gt0srpr 7815 caucvgsr 7869 mappsrprg 7871 map2psrprg 7872 pitonnlem1 7912 pitoregt0 7916 axprecex 7947 axpre-mulgt0 7954 axcaucvglemres 7966 lt0neg1 8495 le0neg1 8497 reclt1 8923 addltmul 9228 eluz2b1 9675 nn01to3 9691 xlt0neg1 9913 xle0neg1 9915 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 bernneq 10752 cbvsum 11525 expcnv 11669 cbvprod 11723 oddge22np1 12046 nn0o1gt2 12070 isprm3 12286 dvdsnprmd 12293 pw2dvdslemn 12333 txmetcnp 14754 sincosq1sgn 15062 sincosq3sgn 15064 sincosq4sgn 15065 logrpap0b 15112 gausslemma2dlem3 15304 | 
| Copyright terms: Public domain | W3C validator |