![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq1 4032 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: eqbrtri 4050 brtpos0 6305 euen1 6856 euen1b 6857 2dom 6859 infglbti 7084 pr2nelem 7251 caucvgprprlemnbj 7753 caucvgprprlemmu 7755 caucvgprprlemaddq 7768 caucvgprprlem1 7769 gt0srpr 7808 caucvgsr 7862 mappsrprg 7864 map2psrprg 7865 pitonnlem1 7905 pitoregt0 7909 axprecex 7940 axpre-mulgt0 7947 axcaucvglemres 7959 lt0neg1 8487 le0neg1 8489 reclt1 8915 addltmul 9219 eluz2b1 9666 nn01to3 9682 xlt0neg1 9904 xle0neg1 9906 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 bernneq 10731 cbvsum 11503 expcnv 11647 cbvprod 11701 oddge22np1 12022 nn0o1gt2 12046 isprm3 12256 dvdsnprmd 12263 pw2dvdslemn 12303 txmetcnp 14686 sincosq1sgn 14961 sincosq3sgn 14963 sincosq4sgn 14964 logrpap0b 15011 gausslemma2dlem3 15179 |
Copyright terms: Public domain | W3C validator |