ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq1i Unicode version

Theorem breq1i 4090
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq1i  |-  ( A R C  <->  B R C )

Proof of Theorem breq1i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq1 4086 . 2  |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
31, 2ax-mp 5 1  |-  ( A R C  <->  B R C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  eqbrtri  4104  brtpos0  6398  euen1  6954  euen1b  6955  2dom  6958  infglbti  7192  pr2nelem  7364  pr2cv2  7369  caucvgprprlemnbj  7880  caucvgprprlemmu  7882  caucvgprprlemaddq  7895  caucvgprprlem1  7896  gt0srpr  7935  caucvgsr  7989  mappsrprg  7991  map2psrprg  7992  pitonnlem1  8032  pitoregt0  8036  axprecex  8067  axpre-mulgt0  8074  axcaucvglemres  8086  lt0neg1  8615  le0neg1  8617  reclt1  9043  addltmul  9348  eluz2b1  9796  nn01to3  9812  xlt0neg1  10034  xle0neg1  10036  iccshftr  10190  iccshftl  10192  iccdil  10194  icccntr  10196  bernneq  10882  cbvsum  11871  expcnv  12015  cbvprod  12069  oddge22np1  12392  nn0o1gt2  12416  isprm3  12640  dvdsnprmd  12647  pw2dvdslemn  12687  txmetcnp  15192  sincosq1sgn  15500  sincosq3sgn  15502  sincosq4sgn  15503  logrpap0b  15550  gausslemma2dlem3  15742
  Copyright terms: Public domain W3C validator