| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 |
|
| Ref | Expression |
|---|---|
| breq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 |
. 2
| |
| 2 | breq1 4048 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: eqbrtri 4066 brtpos0 6340 euen1 6896 euen1b 6897 2dom 6899 infglbti 7129 pr2nelem 7301 caucvgprprlemnbj 7808 caucvgprprlemmu 7810 caucvgprprlemaddq 7823 caucvgprprlem1 7824 gt0srpr 7863 caucvgsr 7917 mappsrprg 7919 map2psrprg 7920 pitonnlem1 7960 pitoregt0 7964 axprecex 7995 axpre-mulgt0 8002 axcaucvglemres 8014 lt0neg1 8543 le0neg1 8545 reclt1 8971 addltmul 9276 eluz2b1 9724 nn01to3 9740 xlt0neg1 9962 xle0neg1 9964 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 bernneq 10807 cbvsum 11704 expcnv 11848 cbvprod 11902 oddge22np1 12225 nn0o1gt2 12249 isprm3 12473 dvdsnprmd 12480 pw2dvdslemn 12520 txmetcnp 15023 sincosq1sgn 15331 sincosq3sgn 15333 sincosq4sgn 15334 logrpap0b 15381 gausslemma2dlem3 15573 |
| Copyright terms: Public domain | W3C validator |