ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq1i Unicode version

Theorem breq1i 4041
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq1i  |-  ( A R C  <->  B R C )

Proof of Theorem breq1i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq1 4037 . 2  |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
31, 2ax-mp 5 1  |-  ( A R C  <->  B R C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  eqbrtri  4055  brtpos0  6312  euen1  6863  euen1b  6864  2dom  6866  infglbti  7093  pr2nelem  7261  caucvgprprlemnbj  7763  caucvgprprlemmu  7765  caucvgprprlemaddq  7778  caucvgprprlem1  7779  gt0srpr  7818  caucvgsr  7872  mappsrprg  7874  map2psrprg  7875  pitonnlem1  7915  pitoregt0  7919  axprecex  7950  axpre-mulgt0  7957  axcaucvglemres  7969  lt0neg1  8498  le0neg1  8500  reclt1  8926  addltmul  9231  eluz2b1  9678  nn01to3  9694  xlt0neg1  9916  xle0neg1  9918  iccshftr  10072  iccshftl  10074  iccdil  10076  icccntr  10078  bernneq  10755  cbvsum  11528  expcnv  11672  cbvprod  11726  oddge22np1  12049  nn0o1gt2  12073  isprm3  12297  dvdsnprmd  12304  pw2dvdslemn  12344  txmetcnp  14780  sincosq1sgn  15088  sincosq3sgn  15090  sincosq4sgn  15091  logrpap0b  15138  gausslemma2dlem3  15330
  Copyright terms: Public domain W3C validator