ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq1i Unicode version

Theorem breq1i 4037
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq1i  |-  ( A R C  <->  B R C )

Proof of Theorem breq1i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq1 4033 . 2  |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
31, 2ax-mp 5 1  |-  ( A R C  <->  B R C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   class class class wbr 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031
This theorem is referenced by:  eqbrtri  4051  brtpos0  6307  euen1  6858  euen1b  6859  2dom  6861  infglbti  7086  pr2nelem  7253  caucvgprprlemnbj  7755  caucvgprprlemmu  7757  caucvgprprlemaddq  7770  caucvgprprlem1  7771  gt0srpr  7810  caucvgsr  7864  mappsrprg  7866  map2psrprg  7867  pitonnlem1  7907  pitoregt0  7911  axprecex  7942  axpre-mulgt0  7949  axcaucvglemres  7961  lt0neg1  8489  le0neg1  8491  reclt1  8917  addltmul  9222  eluz2b1  9669  nn01to3  9685  xlt0neg1  9907  xle0neg1  9909  iccshftr  10063  iccshftl  10065  iccdil  10067  icccntr  10069  bernneq  10734  cbvsum  11506  expcnv  11650  cbvprod  11704  oddge22np1  12025  nn0o1gt2  12049  isprm3  12259  dvdsnprmd  12266  pw2dvdslemn  12306  txmetcnp  14697  sincosq1sgn  15002  sincosq3sgn  15004  sincosq4sgn  15005  logrpap0b  15052  gausslemma2dlem3  15220
  Copyright terms: Public domain W3C validator