| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 |
|
| Ref | Expression |
|---|---|
| breq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 |
. 2
| |
| 2 | breq1 4037 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: eqbrtri 4055 brtpos0 6319 euen1 6870 euen1b 6871 2dom 6873 infglbti 7100 pr2nelem 7270 caucvgprprlemnbj 7777 caucvgprprlemmu 7779 caucvgprprlemaddq 7792 caucvgprprlem1 7793 gt0srpr 7832 caucvgsr 7886 mappsrprg 7888 map2psrprg 7889 pitonnlem1 7929 pitoregt0 7933 axprecex 7964 axpre-mulgt0 7971 axcaucvglemres 7983 lt0neg1 8512 le0neg1 8514 reclt1 8940 addltmul 9245 eluz2b1 9692 nn01to3 9708 xlt0neg1 9930 xle0neg1 9932 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 bernneq 10769 cbvsum 11542 expcnv 11686 cbvprod 11740 oddge22np1 12063 nn0o1gt2 12087 isprm3 12311 dvdsnprmd 12318 pw2dvdslemn 12358 txmetcnp 14838 sincosq1sgn 15146 sincosq3sgn 15148 sincosq4sgn 15149 logrpap0b 15196 gausslemma2dlem3 15388 |
| Copyright terms: Public domain | W3C validator |