ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq1i Unicode version

Theorem breq1i 4012
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq1i  |-  ( A R C  <->  B R C )

Proof of Theorem breq1i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq1 4008 . 2  |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
31, 2ax-mp 5 1  |-  ( A R C  <->  B R C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   class class class wbr 4005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006
This theorem is referenced by:  eqbrtri  4026  brtpos0  6256  euen1  6805  euen1b  6806  2dom  6808  infglbti  7027  pr2nelem  7193  caucvgprprlemnbj  7695  caucvgprprlemmu  7697  caucvgprprlemaddq  7710  caucvgprprlem1  7711  gt0srpr  7750  caucvgsr  7804  mappsrprg  7806  map2psrprg  7807  pitonnlem1  7847  pitoregt0  7851  axprecex  7882  axpre-mulgt0  7889  axcaucvglemres  7901  lt0neg1  8428  le0neg1  8430  reclt1  8856  addltmul  9158  eluz2b1  9604  nn01to3  9620  xlt0neg1  9841  xle0neg1  9843  iccshftr  9997  iccshftl  9999  iccdil  10001  icccntr  10003  bernneq  10644  cbvsum  11371  expcnv  11515  cbvprod  11569  oddge22np1  11889  nn0o1gt2  11913  isprm3  12121  dvdsnprmd  12128  pw2dvdslemn  12168  txmetcnp  14158  sincosq1sgn  14387  sincosq3sgn  14389  sincosq4sgn  14390  logrpap0b  14437
  Copyright terms: Public domain W3C validator