| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 |
|
| Ref | Expression |
|---|---|
| breq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 |
. 2
| |
| 2 | breq1 4086 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: eqbrtri 4104 brtpos0 6398 euen1 6954 euen1b 6955 2dom 6958 infglbti 7192 pr2nelem 7364 pr2cv2 7369 caucvgprprlemnbj 7880 caucvgprprlemmu 7882 caucvgprprlemaddq 7895 caucvgprprlem1 7896 gt0srpr 7935 caucvgsr 7989 mappsrprg 7991 map2psrprg 7992 pitonnlem1 8032 pitoregt0 8036 axprecex 8067 axpre-mulgt0 8074 axcaucvglemres 8086 lt0neg1 8615 le0neg1 8617 reclt1 9043 addltmul 9348 eluz2b1 9796 nn01to3 9812 xlt0neg1 10034 xle0neg1 10036 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 bernneq 10882 cbvsum 11871 expcnv 12015 cbvprod 12069 oddge22np1 12392 nn0o1gt2 12416 isprm3 12640 dvdsnprmd 12647 pw2dvdslemn 12687 txmetcnp 15192 sincosq1sgn 15500 sincosq3sgn 15502 sincosq4sgn 15503 logrpap0b 15550 gausslemma2dlem3 15742 |
| Copyright terms: Public domain | W3C validator |