| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 |
|
| Ref | Expression |
|---|---|
| breq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 |
. 2
| |
| 2 | breq1 4037 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: eqbrtri 4055 brtpos0 6312 euen1 6863 euen1b 6864 2dom 6866 infglbti 7093 pr2nelem 7261 caucvgprprlemnbj 7763 caucvgprprlemmu 7765 caucvgprprlemaddq 7778 caucvgprprlem1 7779 gt0srpr 7818 caucvgsr 7872 mappsrprg 7874 map2psrprg 7875 pitonnlem1 7915 pitoregt0 7919 axprecex 7950 axpre-mulgt0 7957 axcaucvglemres 7969 lt0neg1 8498 le0neg1 8500 reclt1 8926 addltmul 9231 eluz2b1 9678 nn01to3 9694 xlt0neg1 9916 xle0neg1 9918 iccshftr 10072 iccshftl 10074 iccdil 10076 icccntr 10078 bernneq 10755 cbvsum 11528 expcnv 11672 cbvprod 11726 oddge22np1 12049 nn0o1gt2 12073 isprm3 12297 dvdsnprmd 12304 pw2dvdslemn 12344 txmetcnp 14780 sincosq1sgn 15088 sincosq3sgn 15090 sincosq4sgn 15091 logrpap0b 15138 gausslemma2dlem3 15330 |
| Copyright terms: Public domain | W3C validator |