Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
Ref | Expression |
---|---|
breq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 | |
2 | breq1 3968 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1335 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 |
This theorem is referenced by: eqbrtri 3985 brtpos0 6196 euen1 6744 euen1b 6745 2dom 6747 infglbti 6965 pr2nelem 7120 caucvgprprlemnbj 7607 caucvgprprlemmu 7609 caucvgprprlemaddq 7622 caucvgprprlem1 7623 gt0srpr 7662 caucvgsr 7716 mappsrprg 7718 map2psrprg 7719 pitonnlem1 7759 pitoregt0 7763 axprecex 7794 axpre-mulgt0 7801 axcaucvglemres 7813 lt0neg1 8337 le0neg1 8339 reclt1 8761 addltmul 9063 eluz2b1 9505 nn01to3 9519 xlt0neg1 9735 xle0neg1 9737 iccshftr 9891 iccshftl 9893 iccdil 9895 icccntr 9897 bernneq 10531 cbvsum 11250 expcnv 11394 cbvprod 11448 oddge22np1 11764 nn0o1gt2 11788 isprm3 11986 dvdsnprmd 11993 pw2dvdslemn 12030 txmetcnp 12889 sincosq1sgn 13118 sincosq3sgn 13120 sincosq4sgn 13121 logrpap0b 13168 |
Copyright terms: Public domain | W3C validator |