![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq1i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq1 4008 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 |
This theorem is referenced by: eqbrtri 4026 brtpos0 6256 euen1 6805 euen1b 6806 2dom 6808 infglbti 7027 pr2nelem 7193 caucvgprprlemnbj 7695 caucvgprprlemmu 7697 caucvgprprlemaddq 7710 caucvgprprlem1 7711 gt0srpr 7750 caucvgsr 7804 mappsrprg 7806 map2psrprg 7807 pitonnlem1 7847 pitoregt0 7851 axprecex 7882 axpre-mulgt0 7889 axcaucvglemres 7901 lt0neg1 8428 le0neg1 8430 reclt1 8856 addltmul 9158 eluz2b1 9604 nn01to3 9620 xlt0neg1 9841 xle0neg1 9843 iccshftr 9997 iccshftl 9999 iccdil 10001 icccntr 10003 bernneq 10644 cbvsum 11371 expcnv 11515 cbvprod 11569 oddge22np1 11889 nn0o1gt2 11913 isprm3 12121 dvdsnprmd 12128 pw2dvdslemn 12168 txmetcnp 14158 sincosq1sgn 14387 sincosq3sgn 14389 sincosq4sgn 14390 logrpap0b 14437 |
Copyright terms: Public domain | W3C validator |