ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeterval Unicode version

Theorem xmeterval 13229
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmeterval  |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR ) ) )

Proof of Theorem xmeterval
StepHypRef Expression
1 xmetf 13144 . . 3  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
2 ffn 5347 . . 3  |-  ( D : ( X  X.  X ) --> RR*  ->  D  Fn  ( X  X.  X ) )
3 elpreima 5615 . . 3  |-  ( D  Fn  ( X  X.  X )  ->  ( <. A ,  B >.  e.  ( `' D " RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) ) )
41, 2, 33syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( <. A ,  B >.  e.  ( `' D " RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) ) )
5 xmeter.1 . . . 4  |-  .~  =  ( `' D " RR )
65breqi 3995 . . 3  |-  ( A  .~  B  <->  A ( `' D " RR ) B )
7 df-br 3990 . . 3  |-  ( A ( `' D " RR ) B  <->  <. A ,  B >.  e.  ( `' D " RR ) )
86, 7bitri 183 . 2  |-  ( A  .~  B  <->  <. A ,  B >.  e.  ( `' D " RR ) )
9 df-3an 975 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  e.  RR ) )
10 opelxp 4641 . . . . 5  |-  ( <. A ,  B >.  e.  ( X  X.  X
)  <->  ( A  e.  X  /\  B  e.  X ) )
1110bicomi 131 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  <->  <. A ,  B >.  e.  ( X  X.  X
) )
12 df-ov 5856 . . . . 5  |-  ( A D B )  =  ( D `  <. A ,  B >. )
1312eleq1i 2236 . . . 4  |-  ( ( A D B )  e.  RR  <->  ( D `  <. A ,  B >. )  e.  RR )
1411, 13anbi12i 457 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( A D B )  e.  RR ) 
<->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) )
159, 14bitri 183 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) )
164, 8, 153bitr4g 222 1  |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989    X. cxp 4609   `'ccnv 4610   "cima 4614    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853   RRcr 7773   RR*cxr 7953   *Metcxmet 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xmet 12782
This theorem is referenced by:  xmeter  13230  xmetec  13231  xmetresbl  13234
  Copyright terms: Public domain W3C validator