ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeterval Unicode version

Theorem xmeterval 14907
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmeterval  |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR ) ) )

Proof of Theorem xmeterval
StepHypRef Expression
1 xmetf 14822 . . 3  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
2 ffn 5425 . . 3  |-  ( D : ( X  X.  X ) --> RR*  ->  D  Fn  ( X  X.  X ) )
3 elpreima 5699 . . 3  |-  ( D  Fn  ( X  X.  X )  ->  ( <. A ,  B >.  e.  ( `' D " RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) ) )
41, 2, 33syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( <. A ,  B >.  e.  ( `' D " RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) ) )
5 xmeter.1 . . . 4  |-  .~  =  ( `' D " RR )
65breqi 4050 . . 3  |-  ( A  .~  B  <->  A ( `' D " RR ) B )
7 df-br 4045 . . 3  |-  ( A ( `' D " RR ) B  <->  <. A ,  B >.  e.  ( `' D " RR ) )
86, 7bitri 184 . 2  |-  ( A  .~  B  <->  <. A ,  B >.  e.  ( `' D " RR ) )
9 df-3an 983 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  e.  RR ) )
10 opelxp 4705 . . . . 5  |-  ( <. A ,  B >.  e.  ( X  X.  X
)  <->  ( A  e.  X  /\  B  e.  X ) )
1110bicomi 132 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  <->  <. A ,  B >.  e.  ( X  X.  X
) )
12 df-ov 5947 . . . . 5  |-  ( A D B )  =  ( D `  <. A ,  B >. )
1312eleq1i 2271 . . . 4  |-  ( ( A D B )  e.  RR  <->  ( D `  <. A ,  B >. )  e.  RR )
1411, 13anbi12i 460 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( A D B )  e.  RR ) 
<->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) )
159, 14bitri 184 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) )
164, 8, 153bitr4g 223 1  |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4044    X. cxp 4673   `'ccnv 4674   "cima 4678    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944   RRcr 7924   RR*cxr 8106   *Metcxmet 14298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-xmet 14306
This theorem is referenced by:  xmeter  14908  xmetec  14909  xmetresbl  14912
  Copyright terms: Public domain W3C validator