ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeterval Unicode version

Theorem xmeterval 14614
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmeterval  |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR ) ) )

Proof of Theorem xmeterval
StepHypRef Expression
1 xmetf 14529 . . 3  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
2 ffn 5404 . . 3  |-  ( D : ( X  X.  X ) --> RR*  ->  D  Fn  ( X  X.  X ) )
3 elpreima 5678 . . 3  |-  ( D  Fn  ( X  X.  X )  ->  ( <. A ,  B >.  e.  ( `' D " RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) ) )
41, 2, 33syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( <. A ,  B >.  e.  ( `' D " RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) ) )
5 xmeter.1 . . . 4  |-  .~  =  ( `' D " RR )
65breqi 4036 . . 3  |-  ( A  .~  B  <->  A ( `' D " RR ) B )
7 df-br 4031 . . 3  |-  ( A ( `' D " RR ) B  <->  <. A ,  B >.  e.  ( `' D " RR ) )
86, 7bitri 184 . 2  |-  ( A  .~  B  <->  <. A ,  B >.  e.  ( `' D " RR ) )
9 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( A D B )  e.  RR ) )
10 opelxp 4690 . . . . 5  |-  ( <. A ,  B >.  e.  ( X  X.  X
)  <->  ( A  e.  X  /\  B  e.  X ) )
1110bicomi 132 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  <->  <. A ,  B >.  e.  ( X  X.  X
) )
12 df-ov 5922 . . . . 5  |-  ( A D B )  =  ( D `  <. A ,  B >. )
1312eleq1i 2259 . . . 4  |-  ( ( A D B )  e.  RR  <->  ( D `  <. A ,  B >. )  e.  RR )
1411, 13anbi12i 460 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( A D B )  e.  RR ) 
<->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) )
159, 14bitri 184 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )  <->  ( <. A ,  B >.  e.  ( X  X.  X )  /\  ( D `  <. A ,  B >. )  e.  RR ) )
164, 8, 153bitr4g 223 1  |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3622   class class class wbr 4030    X. cxp 4658   `'ccnv 4659   "cima 4663    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919   RRcr 7873   RR*cxr 8055   *Metcxmet 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-xmet 14043
This theorem is referenced by:  xmeter  14615  xmetec  14616  xmetresbl  14619
  Copyright terms: Public domain W3C validator