Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq12 | Unicode version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . 2 | |
2 | breq2 3986 | . 2 | |
3 | 1, 2 | sylan9bb 458 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: breq12i 3991 breq12d 3995 breqan12d 3998 posng 4676 isopolem 5790 poxp 6200 rbropapd 6210 ecopover 6599 ecopoverg 6602 ltdcnq 7338 recexpr 7579 ltresr 7780 reapval 8474 ltxr 9711 xrltnr 9715 xrltnsym 9729 xrlttr 9731 xrltso 9732 xrlttri3 9733 xposdif 9818 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |