| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq12 | Unicode version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4062 |
. 2
| |
| 2 | breq2 4063 |
. 2
| |
| 3 | 1, 2 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: breq12i 4068 breq12d 4072 breqan12d 4075 posng 4765 isopolem 5914 poxp 6341 rbropapd 6351 ecopover 6743 ecopoverg 6746 ltdcnq 7545 recexpr 7786 ltresr 7987 reapval 8684 ltxr 9932 xrltnr 9936 xrltnsym 9950 xrlttr 9952 xrltso 9953 xrlttri3 9954 xposdif 10039 f1olecpbl 13260 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |