ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq12 Unicode version

Theorem breq12 4088
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
breq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breq12
StepHypRef Expression
1 breq1 4086 . 2  |-  ( A  =  B  ->  ( A R C  <->  B R C ) )
2 breq2 4087 . 2  |-  ( C  =  D  ->  ( B R C  <->  B R D ) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  breq12i  4092  breq12d  4096  breqan12d  4099  posng  4791  isopolem  5946  poxp  6378  rbropapd  6388  ecopover  6780  ecopoverg  6783  ltdcnq  7584  recexpr  7825  ltresr  8026  reapval  8723  ltxr  9971  xrltnr  9975  xrltnsym  9989  xrlttr  9991  xrltso  9992  xrlttri3  9993  xposdif  10078  f1olecpbl  13346  wlk2f  16062  exmidsbthrlem  16390
  Copyright terms: Public domain W3C validator