| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq12 | Unicode version | ||
| Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4086 |
. 2
| |
| 2 | breq2 4087 |
. 2
| |
| 3 | 1, 2 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: breq12i 4092 breq12d 4096 breqan12d 4099 posng 4791 isopolem 5946 poxp 6378 rbropapd 6388 ecopover 6780 ecopoverg 6783 ltdcnq 7584 recexpr 7825 ltresr 8026 reapval 8723 ltxr 9971 xrltnr 9975 xrltnsym 9989 xrlttr 9991 xrltso 9992 xrlttri3 9993 xposdif 10078 f1olecpbl 13346 wlk2f 16062 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |