Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq12 | Unicode version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3968 | . 2 | |
2 | breq2 3969 | . 2 | |
3 | 1, 2 | sylan9bb 458 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 |
This theorem is referenced by: breq12i 3974 breq12d 3978 breqan12d 3981 posng 4655 isopolem 5767 poxp 6173 rbropapd 6183 ecopover 6571 ecopoverg 6574 ltdcnq 7300 recexpr 7541 ltresr 7742 reapval 8434 ltxr 9664 xrltnr 9668 xrltnsym 9682 xrlttr 9684 xrltso 9685 xrlttri3 9686 xposdif 9768 exmidsbthrlem 13555 |
Copyright terms: Public domain | W3C validator |