Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brdifun | Unicode version |
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
swoer.1 |
Ref | Expression |
---|---|
brdifun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4636 | . . . 4 | |
2 | df-br 3983 | . . . 4 | |
3 | 1, 2 | sylibr 133 | . . 3 |
4 | swoer.1 | . . . . . 6 | |
5 | 4 | breqi 3988 | . . . . 5 |
6 | brdif 4035 | . . . . 5 | |
7 | 5, 6 | bitri 183 | . . . 4 |
8 | 7 | baib 909 | . . 3 |
9 | 3, 8 | syl 14 | . 2 |
10 | brun 4033 | . . . 4 | |
11 | brcnvg 4785 | . . . . 5 | |
12 | 11 | orbi2d 780 | . . . 4 |
13 | 10, 12 | syl5bb 191 | . . 3 |
14 | 13 | notbid 657 | . 2 |
15 | 9, 14 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 cdif 3113 cun 3114 cop 3579 class class class wbr 3982 cxp 4602 ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 |
This theorem is referenced by: swoer 6529 swoord1 6530 swoord2 6531 |
Copyright terms: Public domain | W3C validator |