![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqi | GIF version |
Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
breqi.1 | ⊢ 𝑅 = 𝑆 |
Ref | Expression |
---|---|
breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
2 | breq 4007 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 class class class wbr 4005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-br 4006 |
This theorem is referenced by: f1ompt 5669 brtpos2 6254 tfrexlem 6337 brdifun 6564 ltpiord 7320 ltxrlt 8025 ltxr 9777 xmeterval 14020 |
Copyright terms: Public domain | W3C validator |