ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord Unicode version

Theorem ltpiord 7320
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7308 . . 3  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
21breqi 4011 . 2  |-  ( A 
<N  B  <->  A (  _E  i^i  ( N.  X.  N. )
) B )
3 brinxp 4696 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A (  _E  i^i  ( N.  X.  N. ) ) B ) )
4 epelg 4292 . . . 4  |-  ( B  e.  N.  ->  ( A  _E  B  <->  A  e.  B ) )
54adantl 277 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A  e.  B ) )
63, 5bitr3d 190 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A (  _E 
i^i  ( N.  X.  N. ) ) B  <->  A  e.  B ) )
72, 6bitrid 192 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148    i^i cin 3130   class class class wbr 4005    _E cep 4289    X. cxp 4626   N.cnpi 7273    <N clti 7276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-eprel 4291  df-xp 4634  df-lti 7308
This theorem is referenced by:  ltsopi  7321  pitric  7322  pitri3or  7323  ltdcpi  7324  ltexpi  7338  ltapig  7339  ltmpig  7340  1lt2pi  7341  nlt1pig  7342  archnqq  7418  prarloclemarch2  7420  prarloclemlt  7494  prarloclemn  7500
  Copyright terms: Public domain W3C validator