ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord Unicode version

Theorem ltpiord 7120
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7108 . . 3  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
21breqi 3930 . 2  |-  ( A 
<N  B  <->  A (  _E  i^i  ( N.  X.  N. )
) B )
3 brinxp 4602 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A (  _E  i^i  ( N.  X.  N. ) ) B ) )
4 epelg 4207 . . . 4  |-  ( B  e.  N.  ->  ( A  _E  B  <->  A  e.  B ) )
54adantl 275 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A  e.  B ) )
63, 5bitr3d 189 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A (  _E 
i^i  ( N.  X.  N. ) ) B  <->  A  e.  B ) )
72, 6syl5bb 191 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480    i^i cin 3065   class class class wbr 3924    _E cep 4204    X. cxp 4532   N.cnpi 7073    <N clti 7076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-eprel 4206  df-xp 4540  df-lti 7108
This theorem is referenced by:  ltsopi  7121  pitric  7122  pitri3or  7123  ltdcpi  7124  ltexpi  7138  ltapig  7139  ltmpig  7140  1lt2pi  7141  nlt1pig  7142  archnqq  7218  prarloclemarch2  7220  prarloclemlt  7294  prarloclemn  7300
  Copyright terms: Public domain W3C validator