ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord Unicode version

Theorem ltpiord 7293
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7281 . . 3  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
21breqi 4004 . 2  |-  ( A 
<N  B  <->  A (  _E  i^i  ( N.  X.  N. )
) B )
3 brinxp 4688 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A (  _E  i^i  ( N.  X.  N. ) ) B ) )
4 epelg 4284 . . . 4  |-  ( B  e.  N.  ->  ( A  _E  B  <->  A  e.  B ) )
54adantl 277 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A  e.  B ) )
63, 5bitr3d 190 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A (  _E 
i^i  ( N.  X.  N. ) ) B  <->  A  e.  B ) )
72, 6bitrid 192 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2146    i^i cin 3126   class class class wbr 3998    _E cep 4281    X. cxp 4618   N.cnpi 7246    <N clti 7249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-eprel 4283  df-xp 4626  df-lti 7281
This theorem is referenced by:  ltsopi  7294  pitric  7295  pitri3or  7296  ltdcpi  7297  ltexpi  7311  ltapig  7312  ltmpig  7313  1lt2pi  7314  nlt1pig  7315  archnqq  7391  prarloclemarch2  7393  prarloclemlt  7467  prarloclemn  7473
  Copyright terms: Public domain W3C validator