ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord Unicode version

Theorem ltpiord 7381
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7369 . . 3  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
21breqi 4036 . 2  |-  ( A 
<N  B  <->  A (  _E  i^i  ( N.  X.  N. )
) B )
3 brinxp 4728 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A (  _E  i^i  ( N.  X.  N. ) ) B ) )
4 epelg 4322 . . . 4  |-  ( B  e.  N.  ->  ( A  _E  B  <->  A  e.  B ) )
54adantl 277 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A  e.  B ) )
63, 5bitr3d 190 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A (  _E 
i^i  ( N.  X.  N. ) ) B  <->  A  e.  B ) )
72, 6bitrid 192 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164    i^i cin 3153   class class class wbr 4030    _E cep 4319    X. cxp 4658   N.cnpi 7334    <N clti 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-eprel 4321  df-xp 4666  df-lti 7369
This theorem is referenced by:  ltsopi  7382  pitric  7383  pitri3or  7384  ltdcpi  7385  ltexpi  7399  ltapig  7400  ltmpig  7401  1lt2pi  7402  nlt1pig  7403  archnqq  7479  prarloclemarch2  7481  prarloclemlt  7555  prarloclemn  7561
  Copyright terms: Public domain W3C validator