ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnims Unicode version

Theorem disjnims 3981
Description: If a collection  B ( i ) for  i  e.  A is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
disjnims  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Distinct variable groups:    i, j, x, A    B, i, j
Allowed substitution hint:    B( x)

Proof of Theorem disjnims
StepHypRef Expression
1 nfcv 2312 . . 3  |-  F/_ i B
2 nfcsb1v 3082 . . 3  |-  F/_ x [_ i  /  x ]_ B
3 csbeq1a 3058 . . 3  |-  ( x  =  i  ->  B  =  [_ i  /  x ]_ B )
41, 2, 3cbvdisj 3976 . 2  |-  (Disj  x  e.  A  B  <-> Disj  i  e.  A  [_ i  /  x ]_ B )
5 csbeq1 3052 . . 3  |-  ( i  =  j  ->  [_ i  /  x ]_ B  = 
[_ j  /  x ]_ B )
65disjnim 3980 . 2  |-  (Disj  i  e.  A  [_ i  /  x ]_ B  ->  A. i  e.  A  A. j  e.  A  ( i  =/=  j  ->  ( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
74, 6sylbi 120 1  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    =/= wne 2340   A.wral 2448   [_csb 3049    i^i cin 3120   (/)c0 3414  Disj wdisj 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-in 3127  df-nul 3415  df-disj 3967
This theorem is referenced by:  disji2  3982
  Copyright terms: Public domain W3C validator