ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnims Unicode version

Theorem disjnims 4074
Description: If a collection  B ( i ) for  i  e.  A is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
disjnims  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Distinct variable groups:    i, j, x, A    B, i, j
Allowed substitution hint:    B( x)

Proof of Theorem disjnims
StepHypRef Expression
1 nfcv 2372 . . 3  |-  F/_ i B
2 nfcsb1v 3157 . . 3  |-  F/_ x [_ i  /  x ]_ B
3 csbeq1a 3133 . . 3  |-  ( x  =  i  ->  B  =  [_ i  /  x ]_ B )
41, 2, 3cbvdisj 4069 . 2  |-  (Disj  x  e.  A  B  <-> Disj  i  e.  A  [_ i  /  x ]_ B )
5 csbeq1 3127 . . 3  |-  ( i  =  j  ->  [_ i  /  x ]_ B  = 
[_ j  /  x ]_ B )
65disjnim 4073 . 2  |-  (Disj  i  e.  A  [_ i  /  x ]_ B  ->  A. i  e.  A  A. j  e.  A  ( i  =/=  j  ->  ( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
74, 6sylbi 121 1  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    =/= wne 2400   A.wral 2508   [_csb 3124    i^i cin 3196   (/)c0 3491  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-in 3203  df-nul 3492  df-disj 4060
This theorem is referenced by:  disji2  4075
  Copyright terms: Public domain W3C validator