ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnims Unicode version

Theorem disjnims 3997
Description: If a collection  B ( i ) for  i  e.  A is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
disjnims  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Distinct variable groups:    i, j, x, A    B, i, j
Allowed substitution hint:    B( x)

Proof of Theorem disjnims
StepHypRef Expression
1 nfcv 2319 . . 3  |-  F/_ i B
2 nfcsb1v 3092 . . 3  |-  F/_ x [_ i  /  x ]_ B
3 csbeq1a 3068 . . 3  |-  ( x  =  i  ->  B  =  [_ i  /  x ]_ B )
41, 2, 3cbvdisj 3992 . 2  |-  (Disj  x  e.  A  B  <-> Disj  i  e.  A  [_ i  /  x ]_ B )
5 csbeq1 3062 . . 3  |-  ( i  =  j  ->  [_ i  /  x ]_ B  = 
[_ j  /  x ]_ B )
65disjnim 3996 . 2  |-  (Disj  i  e.  A  [_ i  /  x ]_ B  ->  A. i  e.  A  A. j  e.  A  ( i  =/=  j  ->  ( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
74, 6sylbi 121 1  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    =/= wne 2347   A.wral 2455   [_csb 3059    i^i cin 3130   (/)c0 3424  Disj wdisj 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-in 3137  df-nul 3425  df-disj 3983
This theorem is referenced by:  disji2  3998
  Copyright terms: Public domain W3C validator