Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjnims | Unicode version |
Description: If a collection for is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.) |
Ref | Expression |
---|---|
disjnims | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . 3 | |
2 | nfcsb1v 3082 | . . 3 | |
3 | csbeq1a 3058 | . . 3 | |
4 | 1, 2, 3 | cbvdisj 3976 | . 2 Disj Disj |
5 | csbeq1 3052 | . . 3 | |
6 | 5 | disjnim 3980 | . 2 Disj |
7 | 4, 6 | sylbi 120 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wne 2340 wral 2448 csb 3049 cin 3120 c0 3414 Disj wdisj 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-in 3127 df-nul 3415 df-disj 3967 |
This theorem is referenced by: disji2 3982 |
Copyright terms: Public domain | W3C validator |