ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnims Unicode version

Theorem disjnims 4025
Description: If a collection  B ( i ) for  i  e.  A is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
disjnims  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Distinct variable groups:    i, j, x, A    B, i, j
Allowed substitution hint:    B( x)

Proof of Theorem disjnims
StepHypRef Expression
1 nfcv 2339 . . 3  |-  F/_ i B
2 nfcsb1v 3117 . . 3  |-  F/_ x [_ i  /  x ]_ B
3 csbeq1a 3093 . . 3  |-  ( x  =  i  ->  B  =  [_ i  /  x ]_ B )
41, 2, 3cbvdisj 4020 . 2  |-  (Disj  x  e.  A  B  <-> Disj  i  e.  A  [_ i  /  x ]_ B )
5 csbeq1 3087 . . 3  |-  ( i  =  j  ->  [_ i  /  x ]_ B  = 
[_ j  /  x ]_ B )
65disjnim 4024 . 2  |-  (Disj  i  e.  A  [_ i  /  x ]_ B  ->  A. i  e.  A  A. j  e.  A  ( i  =/=  j  ->  ( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
74, 6sylbi 121 1  |-  (Disj  x  e.  A  B  ->  A. i  e.  A  A. j  e.  A  (
i  =/=  j  -> 
( [_ i  /  x ]_ B  i^i  [_ j  /  x ]_ B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    =/= wne 2367   A.wral 2475   [_csb 3084    i^i cin 3156   (/)c0 3450  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-in 3163  df-nul 3451  df-disj 4011
This theorem is referenced by:  disji2  4026
  Copyright terms: Public domain W3C validator