ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbveu Unicode version

Theorem cbveu 2038
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cbveu.1  |-  F/ y
ph
cbveu.2  |-  F/ x ps
cbveu.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbveu  |-  ( E! x ph  <->  E! y ps )

Proof of Theorem cbveu
StepHypRef Expression
1 cbveu.1 . . 3  |-  F/ y
ph
21sb8eu 2027 . 2  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
3 cbveu.2 . . . 4  |-  F/ x ps
4 cbveu.3 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
53, 4sbie 1779 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
65eubii 2023 . 2  |-  ( E! y [ y  /  x ] ph  <->  E! y ps )
72, 6bitri 183 1  |-  ( E! x ph  <->  E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448   [wsb 1750   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017
This theorem is referenced by:  cbvmo  2054  cbvreu  2690  cbvreucsf  3109  tz6.12f  5515  f1ompt  5636  climeu  11237
  Copyright terms: Public domain W3C validator