ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12f Unicode version

Theorem tz6.12f 5298
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1  |-  F/_ y F
Assertion
Ref Expression
tz6.12f  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Distinct variable group:    y, A
Allowed substitution hint:    F( y)

Proof of Theorem tz6.12f
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opeq2 3608 . . . . 5  |-  ( z  =  y  ->  <. A , 
z >.  =  <. A , 
y >. )
21eleq1d 2153 . . . 4  |-  ( z  =  y  ->  ( <. A ,  z >.  e.  F  <->  <. A ,  y
>.  e.  F ) )
3 tz6.12f.1 . . . . . . 7  |-  F/_ y F
43nfel2 2237 . . . . . 6  |-  F/ y
<. A ,  z >.  e.  F
5 nfv 1464 . . . . . 6  |-  F/ z
<. A ,  y >.  e.  F
64, 5, 2cbveu 1969 . . . . 5  |-  ( E! z <. A ,  z
>.  e.  F  <->  E! y <. A ,  y >.  e.  F )
76a1i 9 . . . 4  |-  ( z  =  y  ->  ( E! z <. A ,  z
>.  e.  F  <->  E! y <. A ,  y >.  e.  F ) )
82, 7anbi12d 457 . . 3  |-  ( z  =  y  ->  (
( <. A ,  z
>.  e.  F  /\  E! z <. A ,  z
>.  e.  F )  <->  ( <. A ,  y >.  e.  F  /\  E! y <. A , 
y >.  e.  F ) ) )
9 eqeq2 2094 . . 3  |-  ( z  =  y  ->  (
( F `  A
)  =  z  <->  ( F `  A )  =  y ) )
108, 9imbi12d 232 . 2  |-  ( z  =  y  ->  (
( ( <. A , 
z >.  e.  F  /\  E! z <. A ,  z
>.  e.  F )  -> 
( F `  A
)  =  z )  <-> 
( ( <. A , 
y >.  e.  F  /\  E! y <. A ,  y
>.  e.  F )  -> 
( F `  A
)  =  y ) ) )
11 tz6.12 5297 . 2  |-  ( (
<. A ,  z >.  e.  F  /\  E! z
<. A ,  z >.  e.  F )  ->  ( F `  A )  =  z )
1210, 11chvarv 1857 1  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1287    e. wcel 1436   E!weu 1945   F/_wnfc 2212   <.cop 3434   ` cfv 4983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-rex 2361  df-v 2617  df-sbc 2830  df-un 2992  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-iota 4948  df-fv 4991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator