| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvreucsf | Unicode version | ||
| Description: A more general version of cbvreuv 2731 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvralcsf.1 |
|
| cbvralcsf.2 |
|
| cbvralcsf.3 |
|
| cbvralcsf.4 |
|
| cbvralcsf.5 |
|
| cbvralcsf.6 |
|
| Ref | Expression |
|---|---|
| cbvreucsf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . . 4
| |
| 2 | nfcsb1v 3117 |
. . . . . 6
| |
| 3 | 2 | nfcri 2333 |
. . . . 5
|
| 4 | nfs1v 1958 |
. . . . 5
| |
| 5 | 3, 4 | nfan 1579 |
. . . 4
|
| 6 | id 19 |
. . . . . 6
| |
| 7 | csbeq1a 3093 |
. . . . . 6
| |
| 8 | 6, 7 | eleq12d 2267 |
. . . . 5
|
| 9 | sbequ12 1785 |
. . . . 5
| |
| 10 | 8, 9 | anbi12d 473 |
. . . 4
|
| 11 | 1, 5, 10 | cbveu 2069 |
. . 3
|
| 12 | nfcv 2339 |
. . . . . . 7
| |
| 13 | cbvralcsf.1 |
. . . . . . 7
| |
| 14 | 12, 13 | nfcsb 3122 |
. . . . . 6
|
| 15 | 14 | nfcri 2333 |
. . . . 5
|
| 16 | cbvralcsf.3 |
. . . . . 6
| |
| 17 | 16 | nfsb 1965 |
. . . . 5
|
| 18 | 15, 17 | nfan 1579 |
. . . 4
|
| 19 | nfv 1542 |
. . . 4
| |
| 20 | id 19 |
. . . . . 6
| |
| 21 | csbeq1 3087 |
. . . . . . 7
| |
| 22 | sbsbc 2993 |
. . . . . . . . 9
| |
| 23 | 22 | abbii 2312 |
. . . . . . . 8
|
| 24 | cbvralcsf.2 |
. . . . . . . . . . . 12
| |
| 25 | 24 | nfcri 2333 |
. . . . . . . . . . 11
|
| 26 | cbvralcsf.5 |
. . . . . . . . . . . 12
| |
| 27 | 26 | eleq2d 2266 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | sbie 1805 |
. . . . . . . . . 10
|
| 29 | 28 | bicomi 132 |
. . . . . . . . 9
|
| 30 | 29 | abbi2i 2311 |
. . . . . . . 8
|
| 31 | df-csb 3085 |
. . . . . . . 8
| |
| 32 | 23, 30, 31 | 3eqtr4ri 2228 |
. . . . . . 7
|
| 33 | 21, 32 | eqtrdi 2245 |
. . . . . 6
|
| 34 | 20, 33 | eleq12d 2267 |
. . . . 5
|
| 35 | sbequ 1854 |
. . . . . 6
| |
| 36 | cbvralcsf.4 |
. . . . . . 7
| |
| 37 | cbvralcsf.6 |
. . . . . . 7
| |
| 38 | 36, 37 | sbie 1805 |
. . . . . 6
|
| 39 | 35, 38 | bitrdi 196 |
. . . . 5
|
| 40 | 34, 39 | anbi12d 473 |
. . . 4
|
| 41 | 18, 19, 40 | cbveu 2069 |
. . 3
|
| 42 | 11, 41 | bitri 184 |
. 2
|
| 43 | df-reu 2482 |
. 2
| |
| 44 | df-reu 2482 |
. 2
| |
| 45 | 42, 43, 44 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-reu 2482 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |