ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreucsf Unicode version

Theorem cbvreucsf 3113
Description: A more general version of cbvreuv 2698 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
Hypotheses
Ref Expression
cbvralcsf.1  |-  F/_ y A
cbvralcsf.2  |-  F/_ x B
cbvralcsf.3  |-  F/ y
ph
cbvralcsf.4  |-  F/ x ps
cbvralcsf.5  |-  ( x  =  y  ->  A  =  B )
cbvralcsf.6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvreucsf  |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )

Proof of Theorem cbvreucsf
Dummy variables  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
2 nfcsb1v 3082 . . . . . 6  |-  F/_ x [_ z  /  x ]_ A
32nfcri 2306 . . . . 5  |-  F/ x  z  e.  [_ z  /  x ]_ A
4 nfs1v 1932 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfan 1558 . . . 4  |-  F/ x
( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )
6 id 19 . . . . . 6  |-  ( x  =  z  ->  x  =  z )
7 csbeq1a 3058 . . . . . 6  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
86, 7eleq12d 2241 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  [_ z  /  x ]_ A ) )
9 sbequ12 1764 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
108, 9anbi12d 470 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  ph )  <->  ( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph ) ) )
111, 5, 10cbveu 2043 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! z ( z  e. 
[_ z  /  x ]_ A  /\  [ z  /  x ] ph ) )
12 nfcv 2312 . . . . . . 7  |-  F/_ y
z
13 cbvralcsf.1 . . . . . . 7  |-  F/_ y A
1412, 13nfcsb 3086 . . . . . 6  |-  F/_ y [_ z  /  x ]_ A
1514nfcri 2306 . . . . 5  |-  F/ y  z  e.  [_ z  /  x ]_ A
16 cbvralcsf.3 . . . . . 6  |-  F/ y
ph
1716nfsb 1939 . . . . 5  |-  F/ y [ z  /  x ] ph
1815, 17nfan 1558 . . . 4  |-  F/ y ( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )
19 nfv 1521 . . . 4  |-  F/ z ( y  e.  B  /\  ps )
20 id 19 . . . . . 6  |-  ( z  =  y  ->  z  =  y )
21 csbeq1 3052 . . . . . . 7  |-  ( z  =  y  ->  [_ z  /  x ]_ A  = 
[_ y  /  x ]_ A )
22 sbsbc 2959 . . . . . . . . 9  |-  ( [ y  /  x ]
v  e.  A  <->  [. y  /  x ]. v  e.  A
)
2322abbii 2286 . . . . . . . 8  |-  { v  |  [ y  /  x ] v  e.  A }  =  { v  |  [. y  /  x ]. v  e.  A }
24 cbvralcsf.2 . . . . . . . . . . . 12  |-  F/_ x B
2524nfcri 2306 . . . . . . . . . . 11  |-  F/ x  v  e.  B
26 cbvralcsf.5 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  B )
2726eleq2d 2240 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
v  e.  A  <->  v  e.  B ) )
2825, 27sbie 1784 . . . . . . . . . 10  |-  ( [ y  /  x ]
v  e.  A  <->  v  e.  B )
2928bicomi 131 . . . . . . . . 9  |-  ( v  e.  B  <->  [ y  /  x ] v  e.  A )
3029abbi2i 2285 . . . . . . . 8  |-  B  =  { v  |  [
y  /  x ]
v  e.  A }
31 df-csb 3050 . . . . . . . 8  |-  [_ y  /  x ]_ A  =  { v  |  [. y  /  x ]. v  e.  A }
3223, 30, 313eqtr4ri 2202 . . . . . . 7  |-  [_ y  /  x ]_ A  =  B
3321, 32eqtrdi 2219 . . . . . 6  |-  ( z  =  y  ->  [_ z  /  x ]_ A  =  B )
3420, 33eleq12d 2241 . . . . 5  |-  ( z  =  y  ->  (
z  e.  [_ z  /  x ]_ A  <->  y  e.  B ) )
35 sbequ 1833 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
36 cbvralcsf.4 . . . . . . 7  |-  F/ x ps
37 cbvralcsf.6 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3836, 37sbie 1784 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
3935, 38bitrdi 195 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
4034, 39anbi12d 470 . . . 4  |-  ( z  =  y  ->  (
( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )  <->  ( y  e.  B  /\  ps )
) )
4118, 19, 40cbveu 2043 . . 3  |-  ( E! z ( z  e. 
[_ z  /  x ]_ A  /\  [ z  /  x ] ph ) 
<->  E! y ( y  e.  B  /\  ps ) )
4211, 41bitri 183 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! y ( y  e.  B  /\  ps )
)
43 df-reu 2455 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
44 df-reu 2455 . 2  |-  ( E! y  e.  B  ps  <->  E! y ( y  e.  B  /\  ps )
)
4542, 43, 443bitr4i 211 1  |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   F/wnf 1453   [wsb 1755   E!weu 2019    e. wcel 2141   {cab 2156   F/_wnfc 2299   E!wreu 2450   [.wsbc 2955   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-reu 2455  df-sbc 2956  df-csb 3050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator