ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreucsf Unicode version

Theorem cbvreucsf 3030
Description: A more general version of cbvreuv 2630 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
Hypotheses
Ref Expression
cbvralcsf.1  |-  F/_ y A
cbvralcsf.2  |-  F/_ x B
cbvralcsf.3  |-  F/ y
ph
cbvralcsf.4  |-  F/ x ps
cbvralcsf.5  |-  ( x  =  y  ->  A  =  B )
cbvralcsf.6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvreucsf  |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )

Proof of Theorem cbvreucsf
Dummy variables  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1491 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
2 nfcsb1v 3001 . . . . . 6  |-  F/_ x [_ z  /  x ]_ A
32nfcri 2249 . . . . 5  |-  F/ x  z  e.  [_ z  /  x ]_ A
4 nfs1v 1890 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfan 1527 . . . 4  |-  F/ x
( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )
6 id 19 . . . . . 6  |-  ( x  =  z  ->  x  =  z )
7 csbeq1a 2979 . . . . . 6  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
86, 7eleq12d 2185 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  [_ z  /  x ]_ A ) )
9 sbequ12 1727 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
108, 9anbi12d 462 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  ph )  <->  ( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph ) ) )
111, 5, 10cbveu 1999 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! z ( z  e. 
[_ z  /  x ]_ A  /\  [ z  /  x ] ph ) )
12 nfcv 2255 . . . . . . 7  |-  F/_ y
z
13 cbvralcsf.1 . . . . . . 7  |-  F/_ y A
1412, 13nfcsb 3003 . . . . . 6  |-  F/_ y [_ z  /  x ]_ A
1514nfcri 2249 . . . . 5  |-  F/ y  z  e.  [_ z  /  x ]_ A
16 cbvralcsf.3 . . . . . 6  |-  F/ y
ph
1716nfsb 1897 . . . . 5  |-  F/ y [ z  /  x ] ph
1815, 17nfan 1527 . . . 4  |-  F/ y ( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )
19 nfv 1491 . . . 4  |-  F/ z ( y  e.  B  /\  ps )
20 id 19 . . . . . 6  |-  ( z  =  y  ->  z  =  y )
21 csbeq1 2974 . . . . . . 7  |-  ( z  =  y  ->  [_ z  /  x ]_ A  = 
[_ y  /  x ]_ A )
22 sbsbc 2882 . . . . . . . . 9  |-  ( [ y  /  x ]
v  e.  A  <->  [. y  /  x ]. v  e.  A
)
2322abbii 2230 . . . . . . . 8  |-  { v  |  [ y  /  x ] v  e.  A }  =  { v  |  [. y  /  x ]. v  e.  A }
24 cbvralcsf.2 . . . . . . . . . . . 12  |-  F/_ x B
2524nfcri 2249 . . . . . . . . . . 11  |-  F/ x  v  e.  B
26 cbvralcsf.5 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  B )
2726eleq2d 2184 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
v  e.  A  <->  v  e.  B ) )
2825, 27sbie 1747 . . . . . . . . . 10  |-  ( [ y  /  x ]
v  e.  A  <->  v  e.  B )
2928bicomi 131 . . . . . . . . 9  |-  ( v  e.  B  <->  [ y  /  x ] v  e.  A )
3029abbi2i 2229 . . . . . . . 8  |-  B  =  { v  |  [
y  /  x ]
v  e.  A }
31 df-csb 2972 . . . . . . . 8  |-  [_ y  /  x ]_ A  =  { v  |  [. y  /  x ]. v  e.  A }
3223, 30, 313eqtr4ri 2146 . . . . . . 7  |-  [_ y  /  x ]_ A  =  B
3321, 32syl6eq 2163 . . . . . 6  |-  ( z  =  y  ->  [_ z  /  x ]_ A  =  B )
3420, 33eleq12d 2185 . . . . 5  |-  ( z  =  y  ->  (
z  e.  [_ z  /  x ]_ A  <->  y  e.  B ) )
35 sbequ 1794 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
36 cbvralcsf.4 . . . . . . 7  |-  F/ x ps
37 cbvralcsf.6 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3836, 37sbie 1747 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
3935, 38syl6bb 195 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
4034, 39anbi12d 462 . . . 4  |-  ( z  =  y  ->  (
( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )  <->  ( y  e.  B  /\  ps )
) )
4118, 19, 40cbveu 1999 . . 3  |-  ( E! z ( z  e. 
[_ z  /  x ]_ A  /\  [ z  /  x ] ph ) 
<->  E! y ( y  e.  B  /\  ps ) )
4211, 41bitri 183 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! y ( y  e.  B  /\  ps )
)
43 df-reu 2397 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
44 df-reu 2397 . 2  |-  ( E! y  e.  B  ps  <->  E! y ( y  e.  B  /\  ps )
)
4542, 43, 443bitr4i 211 1  |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   F/wnf 1419    e. wcel 1463   [wsb 1718   E!weu 1975   {cab 2101   F/_wnfc 2242   E!wreu 2392   [.wsbc 2878   [_csb 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-reu 2397  df-sbc 2879  df-csb 2972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator