Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1v Unicode version

Theorem cbvopab1v 4004
 Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypothesis
Ref Expression
cbvopab1v.1
Assertion
Ref Expression
cbvopab1v
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbvopab1v
StepHypRef Expression
1 nfv 1508 . 2
2 nfv 1508 . 2
3 cbvopab1v.1 . 2
41, 2, 3cbvopab1 4001 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331  copab 3988 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator