ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1v Unicode version

Theorem cbvopab1v 4080
Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypothesis
Ref Expression
cbvopab1v.1  |-  ( x  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvopab1v  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
Distinct variable groups:    x, y    y,
z    ph, z    ps, x
Allowed substitution hints:    ph( x, y)    ps( y, z)

Proof of Theorem cbvopab1v
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ z
ph
2 nfv 1528 . 2  |-  F/ x ps
3 cbvopab1v.1 . 2  |-  ( x  =  z  ->  ( ph 
<->  ps ) )
41, 2, 3cbvopab1 4077 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   {copab 4064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-opab 4066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator