ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1s Unicode version

Theorem cbvopab1s 4135
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
Assertion
Ref Expression
cbvopab1s  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [
z  /  x ] ph }
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem cbvopab1s
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . 4  |-  F/ z E. y ( w  =  <. x ,  y
>.  /\  ph )
2 nfv 1552 . . . . . 6  |-  F/ x  w  =  <. z ,  y >.
3 nfs1v 1968 . . . . . 6  |-  F/ x [ z  /  x ] ph
42, 3nfan 1589 . . . . 5  |-  F/ x
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph )
54nfex 1661 . . . 4  |-  F/ x E. y ( w  = 
<. z ,  y >.  /\  [ z  /  x ] ph )
6 opeq1 3833 . . . . . . 7  |-  ( x  =  z  ->  <. x ,  y >.  =  <. z ,  y >. )
76eqeq2d 2219 . . . . . 6  |-  ( x  =  z  ->  (
w  =  <. x ,  y >.  <->  w  =  <. z ,  y >.
) )
8 sbequ12 1795 . . . . . 6  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
97, 8anbi12d 473 . . . . 5  |-  ( x  =  z  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) ) )
109exbidv 1849 . . . 4  |-  ( x  =  z  ->  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) ) )
111, 5, 10cbvex 1780 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. z E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) )
1211abbii 2323 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. y ( w  = 
<. z ,  y >.  /\  [ z  /  x ] ph ) }
13 df-opab 4122 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
14 df-opab 4122 . 2  |-  { <. z ,  y >.  |  [
z  /  x ] ph }  =  { w  |  E. z E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) }
1512, 13, 143eqtr4i 2238 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [
z  /  x ] ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516   [wsb 1786   {cab 2193   <.cop 3646   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator