ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1s Unicode version

Theorem cbvopab1s 4159
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
Assertion
Ref Expression
cbvopab1s  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [
z  /  x ] ph }
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem cbvopab1s
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . . . 4  |-  F/ z E. y ( w  =  <. x ,  y
>.  /\  ph )
2 nfv 1574 . . . . . 6  |-  F/ x  w  =  <. z ,  y >.
3 nfs1v 1990 . . . . . 6  |-  F/ x [ z  /  x ] ph
42, 3nfan 1611 . . . . 5  |-  F/ x
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph )
54nfex 1683 . . . 4  |-  F/ x E. y ( w  = 
<. z ,  y >.  /\  [ z  /  x ] ph )
6 opeq1 3857 . . . . . . 7  |-  ( x  =  z  ->  <. x ,  y >.  =  <. z ,  y >. )
76eqeq2d 2241 . . . . . 6  |-  ( x  =  z  ->  (
w  =  <. x ,  y >.  <->  w  =  <. z ,  y >.
) )
8 sbequ12 1817 . . . . . 6  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
97, 8anbi12d 473 . . . . 5  |-  ( x  =  z  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) ) )
109exbidv 1871 . . . 4  |-  ( x  =  z  ->  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) ) )
111, 5, 10cbvex 1802 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. z E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) )
1211abbii 2345 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. y ( w  = 
<. z ,  y >.  /\  [ z  /  x ] ph ) }
13 df-opab 4146 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
14 df-opab 4146 . 2  |-  { <. z ,  y >.  |  [
z  /  x ] ph }  =  { w  |  E. z E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) }
1512, 13, 143eqtr4i 2260 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [
z  /  x ] ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538   [wsb 1808   {cab 2215   <.cop 3669   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator