ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1s Unicode version

Theorem cbvopab1s 4057
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
Assertion
Ref Expression
cbvopab1s  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [
z  /  x ] ph }
Distinct variable groups:    x, y, z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem cbvopab1s
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . 4  |-  F/ z E. y ( w  =  <. x ,  y
>.  /\  ph )
2 nfv 1516 . . . . . 6  |-  F/ x  w  =  <. z ,  y >.
3 nfs1v 1927 . . . . . 6  |-  F/ x [ z  /  x ] ph
42, 3nfan 1553 . . . . 5  |-  F/ x
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph )
54nfex 1625 . . . 4  |-  F/ x E. y ( w  = 
<. z ,  y >.  /\  [ z  /  x ] ph )
6 opeq1 3758 . . . . . . 7  |-  ( x  =  z  ->  <. x ,  y >.  =  <. z ,  y >. )
76eqeq2d 2177 . . . . . 6  |-  ( x  =  z  ->  (
w  =  <. x ,  y >.  <->  w  =  <. z ,  y >.
) )
8 sbequ12 1759 . . . . . 6  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
97, 8anbi12d 465 . . . . 5  |-  ( x  =  z  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) ) )
109exbidv 1813 . . . 4  |-  ( x  =  z  ->  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) ) )
111, 5, 10cbvex 1744 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. z E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) )
1211abbii 2282 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. y ( w  = 
<. z ,  y >.  /\  [ z  /  x ] ph ) }
13 df-opab 4044 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
14 df-opab 4044 . 2  |-  { <. z ,  y >.  |  [
z  /  x ] ph }  =  { w  |  E. z E. y
( w  =  <. z ,  y >.  /\  [
z  /  x ] ph ) }
1512, 13, 143eqtr4i 2196 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [
z  /  x ] ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480   [wsb 1750   {cab 2151   <.cop 3579   {copab 4042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator