Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvopab1v | GIF version |
Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
cbvopab1v.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab1v | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1522 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | nfv 1522 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvopab1v.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvopab1 4063 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1349 {copab 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-v 2733 df-un 3126 df-sn 3590 df-pr 3591 df-op 3593 df-opab 4052 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |