| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvopab1v | GIF version | ||
| Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| cbvopab1v.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopab1v | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1554 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfv 1554 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvopab1v.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvopab1 4136 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 {copab 4123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-opab 4125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |