ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab2v Unicode version

Theorem cbvopab2v 3973
Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
Hypothesis
Ref Expression
cbvopab2v.1  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvopab2v  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
Distinct variable groups:    x, y, z    ph, z    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, z)

Proof of Theorem cbvopab2v
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 opeq2 3674 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
21eqeq2d 2127 . . . . . 6  |-  ( y  =  z  ->  (
w  =  <. x ,  y >.  <->  w  =  <. x ,  z >.
) )
3 cbvopab2v.1 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
42, 3anbi12d 462 . . . . 5  |-  ( y  =  z  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  z >.  /\  ps ) ) )
54cbvexv 1870 . . . 4  |-  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. z
( w  =  <. x ,  z >.  /\  ps ) )
65exbii 1567 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. z
( w  =  <. x ,  z >.  /\  ps ) )
76abbii 2231 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. x E. z ( w  = 
<. x ,  z >.  /\  ps ) }
8 df-opab 3958 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
9 df-opab 3958 . 2  |-  { <. x ,  z >.  |  ps }  =  { w  |  E. x E. z
( w  =  <. x ,  z >.  /\  ps ) }
107, 8, 93eqtr4i 2146 1  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451   {cab 2101   <.cop 3498   {copab 3956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-sn 3501  df-pr 3502  df-op 3504  df-opab 3958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator