Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvopab2v | Unicode version |
Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
Ref | Expression |
---|---|
cbvopab2v.1 |
Ref | Expression |
---|---|
cbvopab2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3744 | . . . . . . 7 | |
2 | 1 | eqeq2d 2169 | . . . . . 6 |
3 | cbvopab2v.1 | . . . . . 6 | |
4 | 2, 3 | anbi12d 465 | . . . . 5 |
5 | 4 | cbvexv 1898 | . . . 4 |
6 | 5 | exbii 1585 | . . 3 |
7 | 6 | abbii 2273 | . 2 |
8 | df-opab 4028 | . 2 | |
9 | df-opab 4028 | . 2 | |
10 | 7, 8, 9 | 3eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 cab 2143 cop 3564 copab 4026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3567 df-pr 3568 df-op 3570 df-opab 4028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |